Canopy Carbon- and Water-Use Efficiencies in Response to Temperature and Water Deficit for Wheat.

Plant Cell Environ

LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The frequency and intensity of extreme climatic events increase the complexity in assessing climate change impacts on (agro)ecosystem functions and crop production. A better understanding of carbon and water fluxes for crop plants under climate change requires research based on direct canopy-scale measurements. By analysing a canopy gas exchange data set synthesised from 8 years' experimentation under semi-field conditions for the post-anthesis period of five wheat genotypes, we examined canopy carbon and water fluxes as well as carbon use efficiency (CUE) and water use efficiency (WUE) under varying environmental conditions. CUE was variable, and was negatively affected by high temperatures. Moreover, CUE responded differently to daily, daytime, and nighttime temperatures, and was most sensitive to nighttime temperatures. The response of WUE to increasing temperatures was dominated by the response of carbon fluxes, while the relative contribution of water fluxes to WUE responses increased under water deficit. WUE based on gross and net photosynthesis responded differently to environmental variables, primarily due to the differences in CUE. The findings increase our understanding of canopy carbon and water fluxes under various environmental conditions and highlight the necessity for future efforts to improve crop CUE and WUE under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.70147DOI Listing

Publication Analysis

Top Keywords

water fluxes
16
climate change
12
carbon water
12
water deficit
8
canopy carbon
8
environmental conditions
8
responded differently
8
nighttime temperatures
8
water
7
carbon
5

Similar Publications

Spatial distributions of biogenic sulfur compounds and isoprene in the tropical western Pacific Ocean: Implications for air-sea fluxes and deep-ocean reservoirs.

Mar Environ Res

September 2025

Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,

Simultaneous measurements of dimethylsulfide (DMS) and isoprene in seawater and the overlying atmosphere were conducted in the tropical western Pacific Ocean during February-March 2017. Surface seawater exhibited a strong correlation between DMS and dimethylsulfoniopropionate (DMSP), with similar spatial distributions, whereas dimethylsulfoxide (DMSO) displayed an opposing trend. Latitudinal and vertical profiles of DMS, DMSP, and isoprene revealed their pronounced dependence on biological factors, particularly in subsurface layers.

View Article and Find Full Text PDF

Beyond top-hit nontarget screening: Diagnostic fragment analysis reveals nitrogen-containing heterocycles in iron and steel industry wastewater.

J Hazard Mater

September 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China. Electronic address: wlsu

Nitrogen-containing heterocyclic compounds (NHCs), widely present in industrial wastewater, pose significant environmental and health risks, yet their identification and characterization remain poorly understood. Herein, we developed a diagnostic fragment list comprising 20 nitrogen-containing fragments for NHCs, by integrating chemical information from Pubchem with the NIST mass spectral library. Leveraging this list, we employed a diagnostic fragment-assisted nontarget screening approach and identified 151 NHCs in iron and steel industry wastewater.

View Article and Find Full Text PDF

Sustainable Antimicrobial Silver@MXene Nanofiber Membranes for Enhanced Photothermal Membrane Distillation Performance.

ACS Appl Mater Interfaces

September 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Solar-driven desalination has emerged as a sustainable and efficient solution for addressing global water scarcity, especially beneficial in remote, off-grid, and disaster-affected regions. Among emerging technologies, photothermal membrane distillation (PMD) stands out due to its effective solar-energy conversion, scalability, and simplicity. Here, we report a hybrid PMD membrane fabricated by electrospinning MXene (TiCT) nanosheets integrated with silver nanoparticles (AgNPs) onto a poly(vinylidene fluoride--hexafluoropropylene) (PH) substrate.

View Article and Find Full Text PDF

Aerogels are widely used in environmental remediation, but their application is hindered by brittleness, limited oil absorption and poor separation of viscous crude oil. In this study, a multifunctional superhydrophobic aerogel with electrothermal and photothermal effects was prepared from bacterial cellulose (BC), methyltrimethoxysilane (MTMS), and hydroxylated carbon nanotubes (HCNT) by soft-hard synergistic and directed freezing. The prepared aerogel exhibited an oriented layered porous structure with excellent compressibility and oil retention capacity.

View Article and Find Full Text PDF

Current antibiotic-resistant bacteria (ARB) disinfection techniques commonly rely on large dosages of oxidants, resulting in the presence of considerable amounts of residuals and toxic disinfection byproducts (DBPs) in water. Herein, we propose a highly effective ARB disinfection approach via activating an ultralow concentration (10 μM) of chlorite (ClO) by naturally abundant sunlight to generate various reactive species (i.e.

View Article and Find Full Text PDF