Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Upcycling plastic waste into single-atom catalysts (SACs) not only offers a sustainable solution for plastic waste management but also yields valuable functional materials for catalytic applications. Here, we report a simple and scalable method to transform various types of plastics, including polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, and their mixtures, into a diversity of porous SACs with different coordination chemistry and their excellent applications in a variety of catalytic reactions. Lamellar transition metal chloride salts (Ni, Fe, Co, Mn, and Cu) are employed as a template and catalyst for confined carbonization of plastics into layered SACs. An appropriate plastic-to-salt ratio is the key factor for preventing metal agglomeration during SAC synthesis. The SACs demonstrate exceptional catalytic activity in oxidative degradation of a range of persistent organic pollutants for water treatment and excel in electrocatalytic systems such as oxygen/nitrogen reduction reactions and lithium-sulfur batteries. This technique provides a versatile, scalable, and efficient strategy for upcycling solid wastes into high-performance materials for environmental and energy catalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405558PMC
http://dx.doi.org/10.1038/s41467-025-63648-zDOI Listing

Publication Analysis

Top Keywords

single-atom catalysts
8
environmental energy
8
plastic waste
8
salt-templated transformation
4
transformation waste
4
waste plastics
4
plastics single-atom
4
catalysts environmental
4
energy applications
4
applications upcycling
4

Similar Publications

Chemical C-N coupling from CO and N toward urea synthesis is an appealing approach for Bosch-Meiser urea production. However, this process faces significant challenges, including the difficulty of N activation, high energy barriers, and low selectivity. In this study, we theoretically designed a Ni triple-atom doped CuO catalyst, Ni TAC@CuO, which exhibits exceptional urea synthesis performance.

View Article and Find Full Text PDF

P-Doped Cu-N-C Single-Atom Catalysts Boost Cathodic Electrochemiluminescence of Luminol for MicroRNA-320d Detection.

Anal Chem

September 2025

Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.

Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Electronic Structure Reconfiguration of Zn-NB Sites for Enhanced Fenton-Like Catalysis.

Angew Chem Int Ed Engl

September 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.

Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.

View Article and Find Full Text PDF