Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, glucose oxidase (GOD) is connected to FeO nanozyme by using epoxy cross-linkers as a spacer arm to construct a GOD-nanozyme artificial enzyme cascade system that is easy to separate magnetically. The dual-enzyme system can regulate the distance between GOD and nanozyme by changing the chain length of the cross-linker. The optimal interenzyme spacing of 2 nm has led to a significant increase in the cascade activity of the dual-enzyme system to 1400 U/mg, which is 2.5 times higher than the cascade activity of the free two enzymes. The GOD-nanozyme cascade system is applied to glucose assay, which has high sensitivity and selectivity for glucose with the lowest detection limit of 0.1 mM. Even in a system where the concentration of interfering substances is 10 times higher than that of glucose, the GOD-nanozyme cascade system can still specifically recognize glucose. The dual-enzyme system is used to establish a visual analysis device for glucose detection. The design of this visual analysis device provides a new strategy for the visual detection of glucose, which is of great significance for promoting the development of bioenzyme-nanozyme cascade systems in bioanalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.5c07061DOI Listing

Publication Analysis

Top Keywords

cascade system
16
dual-enzyme system
12
glucose
9
system
8
interenzyme spacing
8
cascade activity
8
times higher
8
god-nanozyme cascade
8
visual analysis
8
analysis device
8

Similar Publications

RNA interference targeting cytochrome P450 cyp303a1 on the performance of Henosepilachna vigintioctopunctata.

Pestic Biochem Physiol

November 2025

Key Laboratory of Intergraded Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China. Electroni

CYP303A1 is vital for metamorphosis in Locusta migratoria and Drosophila melanogaster. Here we uncovered that RNA interference (RNAi) against Hvcyp303a1 in the third instar larvae in a Coleopteran Henosepilachna vigintioctopunctata caused severe phenotypic defects. The Hvcyp303a1 RNAi larvae grew slowly, had thin head capsule and soft scoli, and ate less potato foliage.

View Article and Find Full Text PDF

Novel ultrafine Pt@Fe-MIL-101 nanozyme enables robust aflatoxin B1 immunoassay in diverse marine and agricultural systems.

Anal Chim Acta

November 2025

State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang

Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.

View Article and Find Full Text PDF

Integrating multi-enzyme systems within metal-organic frameworks (MOFs) has garnered significant attention in biocatalysis due to their tunable structural properties and ability to enhance enzyme performance in cascade reactions. The unique features of MOFs, such as well-defined pore apertures, tailorable compositions, and high loading capacity, facilitate the design of robust multi-enzyme bio-composites with enhanced recyclability and specificity. This review explores systematic approaches for the compartmentalization and positional co-immobilization of multiple enzymes within MOFs, focusing on two key strategies: (i) layer-by-layer assembly and (ii) pore-engineered compartmentalization.

View Article and Find Full Text PDF

At the beginning of the twenty-first century, the primary view of infant visual attention development focused on a transition across the first postnatal year from being stimulus-driven to goal-driven, reflecting a broader shift from subcortical to cortical control. This perspective was supported by decades of infant looking-time studies. However, our understanding of infant attention has significantly evolved over the past 25 years, shaped by both theoretical advancements and new technological and methodological tools.

View Article and Find Full Text PDF

Unifying Vascular Injury and Neurodegeneration: A Mechanistic Continuum in Cerebral Small Vessel Disease and Dementia.

Eur J Neurosci

September 2025

Global Health Neurology Lab, Sydney, New South Wales, Australia.

Cerebral small vessel disease (CSVD) is a major yet underappreciated driver of cognitive impairment and dementia, contributing to nearly half of all cases. Emerging evidence indicates that CSVD is not merely a coexisting vascular condition but an active amplifier of neurodegeneration, operating through a self-perpetuating cascade of microvascular injury, blood-brain barrier (BBB) breakdown, and glymphatic system dysfunction. In this hypothesis-driven review, we propose the Integrated Vascular-Neurodegenerative Continuum, a mechanistic model in which vascular pathology triggers and accelerates neurodegeneration via intersecting pathways, including chronic cerebral hypoperfusion, oxidative stress, and APOE ε4-associated endothelial vulnerability.

View Article and Find Full Text PDF