98%
921
2 minutes
20
The depletion of arable land, water scarcity, frequent climate fluctuations, the onset of the COVID-19 pandemic, inefficiencies in pesticide usage, and the Ukraine-Russia conflict, which disrupted global supplies of fertilisers, have collectively heightened crop strain and reduced agricultural productivity. In this regard, to overcome these agriculture problems, adopting a sustainable approach for agricultural production plays a significant role in ensuring global food security. Carbon dots, a novel member of the carbon-based nanomaterial's family with extraordinary properties such as chemical stability, water solubility, low cytotoxicity, small size, biocompatibility, and photoluminescence, have recently attracted attention in agriculture sectors. The abundant hydrophilic functional groups on the surface of carbon dots, together with their small size and structural features, provide several advantages, such as increased crop growth, improved photosynthesis, stress tolerance, and accelerated seed germination. Carbon dots have also shown impressive advantages in nutrient uptake, and acting as sensors for pesticides, herbicides, and nutrients. Furthermore, carbon dots facilitate precise gene delivery into plant cells creating opportunities for genetic improvement and also enhance post-harvest preservation. This review highlights the potential of carbon dots in the field of agriculture, covering their classification, source of synthesis, and their diverse applications in the field of agriculture. While their potential is vast, further research is essential to address toxicological concerns and environmental impacts to ensure their safe and effective integration into agricultural system. Lastly, the limitations and future perspectives are outlined, which need to be focused on promoting the potential application of carbon dots in the agricultural sector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-025-04508-3 | DOI Listing |
Macromol Biosci
September 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.
Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.
View Article and Find Full Text PDFLangmuir
September 2025
Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
The study addresses the critical issue of sepsis diagnosis, a life-threatening condition triggered by the body's immune response to infection that leads to mortality. Current diagnostic methods rely on the time-consuming assessment of multiple biomarkers by a series of tests, leading to delayed treatment. Here, we report a platform for developing a point-of-care (POC) device utilizing electrochemical immunosensors for the dual and rapid detection of sepsis biomarkers: Procalcitonin (PCT), Interleukin-6 (IL-6), and C-reactive protein (CRP) as host markers and lipopolysaccharide (LPS) as a pathogen marker.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.
Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research S.A.S. Nagar Mohali 160062 Punjab India
Nitrosamines are genotoxic, mutagenic impurities and are widely encountered in the global landscape of the pharmaceutical industry. There is a need for rapid detection of nitrosamines in a pharmaceutical product. Here, we report the synthesis of carbon quantum dots (CQDs) using a readily available carbon precursor.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Constitution and Reaction of Matter, UFR SSMT, Felix Houphouet Boigny University Abidjan 22 BP 582 Cote d'Ivoire.
Melamine is an additive used fraudulently to enrich foods with nitrogen, particularly in the dairy industry. It is also known as the main metabolite or degradation phytosanitary product of cyromazine. However, the numerous incidents involving living beings in aquatic environments, children and pets fed with products made from melamine in China and certain African countries have led to distrust of melamine in food.
View Article and Find Full Text PDF