Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acid dissolution of carbonate formations is critical to the energy transition and relevant to many engineering applications. The dynamics of the dissolution reaction are complex, strongly depend both on the flow properties and sample mineralogy and are further complicated by the production of carbon dioxide gas bubbles from the reactive surface, which renders the system multiphase. Quantifying the impact of multiphase flow conditions on effective reaction rates of carbonate dissolution has challenged experimental methods focused on core-based characterization techniques. In this work, we use microfluidic devices that contain carbonate-rich (86 wt%) rock samples with a cylindrical shape to observe their dissolution upon injection of hydrochloric (HCl) acid under both single and multiphase conditions. The dissolution reaction is visualized and recorded at high temporal resolution using a high-speed camera and is quantified through machine learning (ML)-based image segmentation. First, we combine ML-enabled image analysis with physics-based modeling to estimate the instantaneous reaction rates of carbonate dissolution under single-phase conditions and validate that it follows a first-order reaction rate law. Then, we use the proposed approach to determine the effective dissolution rate under multiphase flow conditions, when - at higher HCl concentration - the formation of CO bubbles shields the adjacent carbonate surface hindering reaction progress. We find that, under such conditions, the effective reaction rate decreases by one order of magnitude, strongly deviating from the reaction rate law previously determined for single-phase conditions and that current models are not able to capture the impact of gas shielding effects on effective reaction rates under multiphase flow conditions. We also find that the natural chemical heterogeneity of rocks leads to the formation of an unreacted mineral porous layer which serves as the substrate for gas bubbles to nucleate and grow, which changes the conceptual model established for calcite systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5lc00557dDOI Listing

Publication Analysis

Top Keywords

carbonate dissolution
12
multiphase flow
12
flow conditions
12
effective reaction
12
reaction rates
12
reaction rate
12
reaction
9
physics-based modeling
8
dissolution
8
dissolution reaction
8

Similar Publications

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Synergistic t-to-π* Electron Transfer and Nanotube Engineering in Spinal Catalysts for Ultra-Efficient Chloride Evolution.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Facing the massive energy consumption of over 200 TWh y of chlor-alkali industry, developing high-activity and durable non-precious CER (chlorine evolution reaction) catalysts is urgently needed to address the high overpotentials and suppress the dissolution high-valance metal species. Herein, a carbon quantum dots functionalized trimetallic Fe/Co/Ni spinel oxide nanotube architecture (FCNO@CQDs) is constructed, featuring t-to-π* π-backbonding for dramatically enhanced CER activity and stability. The reverse electron flow from Co d-obritals to the vacant CQDs' π* orbitals can upshift the d-band center for enhanced intermediate adsorption, while stabilizing high-valent Co centers via increased bond order.

View Article and Find Full Text PDF

At methane seeps worldwide, syntrophic anaerobic methane-oxidizing archaea and sulfate-reducing bacteria promote carbonate precipitation and rock formation, acting as methane and carbon sinks. Although maintenance of anaerobic oxidation of methane (AOM) within seep carbonates has been documented, its reactivation upon methane exposure remains uncertain. Surface-associated microbes may metabolize sulfide from AOM, maintain carbonate anoxia, contribute to carbonate dissolution, and support higher trophic levels; however, these communities are poorly described.

View Article and Find Full Text PDF

The dissolution of CO in oilfield produced water causes severe pipeline corrosion and economic losses, highlighting the critical need for medium-high temperature corrosion inhibitors for carbon steel protection. Imidazoline derivative corrosion inhibitors S4-C7 (thiophene-imidazoline octanamide), S4-C9 (thiophene-imidazoline decanamide), S4-C11 (thiophene-imidazoline lauramide) and S4-C13 (thiophene-imidazoline myristamide) with different carbon chain lengths were synthesized by modifying thiophene-imidazoline with different organic acids. At medium-high temperatures, weight loss measurements, electrochemical tests, surface morphology analysis, and theoretical calculations were employed to investigate their inhibition performances and mechanisms in CO-containing solutions.

View Article and Find Full Text PDF