98%
921
2 minutes
20
The multi-strategy optimized dream optimization algorithm (MSDOA) is proposed to address the challenges of inadequate search capability, slow convergence, and susceptibility to local optima in intelligent optimization algorithms applied to UAV three-dimensional path planning, aiming to enhance the global search efficiency and accuracy of UAV path planning algorithms in 3D environments. First, the algorithm utilizes Bernoulli chaotic mapping for population initialization to widen individual search ranges and enhance population diversity. Subsequently, an adaptive perturbation mechanism is incorporated during the exploration phase along with a lens imaging reverse learning strategy to update the population, thereby improving the exploration ability and accelerating convergence while mitigating premature convergence. Lastly, an Adaptive Individual-level Mixed Strategy (AIMS) is developed to conduct a more flexible search process and enhance the algorithm's global search capability. The performance of the algorithm is evaluated through simulation experiments using the CEC2017 benchmark test functions. The results indicate that the proposed algorithm achieves superior optimization accuracy, faster convergence speed, and enhanced robustness compared to other swarm intelligence algorithms. Specifically, MSDOA ranks first on 28 out of 29 benchmark functions in the CEC2017 test suite, demonstrating its outstanding global search capability and conver-gence performance. Furthermore, UAV path planning simulation experiments conducted across multiple scenario models show that MSDOA exhibits stronger adaptability to complex three-dimensional environments. In the most challenging scenario, compared to the standard DOA, MSDOA reduces the best cost function fitness by 9% and decreases the average cost function fitness by 12%, thereby generating more efficient, smoother, and higher-quality flight paths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383324 | PMC |
http://dx.doi.org/10.3390/biomimetics10080551 | DOI Listing |
Objectives: Waterpipe smoking is increasingly becoming a public health threat due to its appealing features and misperceptions of its harmful effects. Tools assessing waterpipe addiction are essential for understanding waterpipe smokers' behaviors and designing effective smoking cessation plans. This study aimed to develop and validate the Waterpipe Addiction, Craving, and Anticipation Scale (WACAS) and describe the specific patterns and multidimensional aspects of waterpipe smoking behavior.
View Article and Find Full Text PDFFront Big Data
August 2025
MaiNLP, Center for Information and Language Processing, LMU Munich, Munich, Germany.
Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiation Oncology, Mayo Clinic in Florida, Jacksonville, Florida, USA.
Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.
Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).
Front Plant Sci
August 2025
Engineering Research Center of Edibleand Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun, Changchun, China.
Traditional path planning algorithms often face problems such as local optimum traps and low monitoring efficiency in agricultural UAV operations, making it difficult to meet the operational requirements of complex environments in modern precision agriculture. Therefore, there is an urgent need to develop an intelligent path planning algorithm. To address this issue, this study proposes an improved Informed-RRT* path planning algorithm guided by domain-partitioned A* algorithm.
View Article and Find Full Text PDFData Brief
October 2025
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
Unmanned Aerial Vehicles (UAVs) have become a critical focus in robotics research, particularly in the development of autonomous navigation and target-tracking systems. This journal article provides an overview of a multi-year IEEE-hosted drone competition designed to advance UAV autonomy in complex environments. The competition consisted of two primary challenges.
View Article and Find Full Text PDF