Grid-Based Path Planning of Agricultural Robots Driven by Multi-Strategy Collaborative Evolution Honey Badger Algorithm.

Biomimetics (Basel)

School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330000, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To address the limitations of mobile robots in path planning within farmland-specific environments, this paper proposes a biomimetic model: Multi-strategy Collaborative Evolution Honey Badger Algorithm (MCEHBA), MCEHBA achieves improvements through the following strategies: firstly, integrating a sinusoidal function-based nonlinear convergence factor to dynamically balance global exploration and local exploitation; secondly, combining the differential evolution strategy to enhance population diversity, and utilizing gravity-centred opposition-based learning to improve solution space search efficiency; finally, constructing good point set initialization and decentralized boundary constraint handling strategy to further increase convergence accuracy and speed. This paper validates the effectiveness of the optimization strategy and the performance of MCEHBA through the CEC2017 benchmark function set, and assesses the statistical significance of the results using the Friedman test and Nemenyi test. The findings demonstrate that MCEHBA exhibits excellent optimization capabilities. Additionally, this study applied MCEHBA to solve three engineering application problems and compared its results with six other algorithms, showing that MCEHBA achieved the minimum objective function values in all three cases. Finally, simulation experiments were conducted in three farmland scenarios of varying scales, with comparative tests against three state-of-the-art algorithms. The results indicate that MCEHBA generates paths with minimized total costs, demonstrating superior global convergence and engineering applicability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383466PMC
http://dx.doi.org/10.3390/biomimetics10080535DOI Listing

Publication Analysis

Top Keywords

path planning
8
multi-strategy collaborative
8
collaborative evolution
8
evolution honey
8
honey badger
8
badger algorithm
8
mcehba
7
grid-based path
4
planning agricultural
4
agricultural robots
4

Similar Publications

Objectives: Waterpipe smoking is increasingly becoming a public health threat due to its appealing features and misperceptions of its harmful effects. Tools assessing waterpipe addiction are essential for understanding waterpipe smokers' behaviors and designing effective smoking cessation plans. This study aimed to develop and validate the Waterpipe Addiction, Craving, and Anticipation Scale (WACAS) and describe the specific patterns and multidimensional aspects of waterpipe smoking behavior.

View Article and Find Full Text PDF

Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets.

View Article and Find Full Text PDF

Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.

Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).

View Article and Find Full Text PDF

Traditional path planning algorithms often face problems such as local optimum traps and low monitoring efficiency in agricultural UAV operations, making it difficult to meet the operational requirements of complex environments in modern precision agriculture. Therefore, there is an urgent need to develop an intelligent path planning algorithm. To address this issue, this study proposes an improved Informed-RRT* path planning algorithm guided by domain-partitioned A* algorithm.

View Article and Find Full Text PDF

UAS competition ROSbag datasets.

Data Brief

October 2025

School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.

Unmanned Aerial Vehicles (UAVs) have become a critical focus in robotics research, particularly in the development of autonomous navigation and target-tracking systems. This journal article provides an overview of a multi-year IEEE-hosted drone competition designed to advance UAV autonomy in complex environments. The competition consisted of two primary challenges.

View Article and Find Full Text PDF