98%
921
2 minutes
20
Ovarian cancer (OC) remains one of the most lethal gynecologic malignancies due to its asymptomatic progression, frequent late-stage diagnosis, and high rates of chemoresistance and recurrence. Beyond genetic alterations, recent studies highlight the central role of metabolic reprogramming in driving OC initiation, progression, and therapy resistance. OC cells exhibit dynamic metabolic reprogramming, enabling dynamic shifts between glycolysis and oxidative phosphorylation depending on environmental conditions and treatment pressures. In this review, we synthesize current understanding of key metabolic pathways altered in ovarian tumors, including enhanced aerobic glycolysis, glutamine addiction, dysregulated lipid metabolism, and mitochondrial adaptations. These metabolic shifts support rapid proliferation, redox homeostasis, immune evasion, and metastatic potential. We also explore how the metabolic landscape of OC is shaped by interactions with the tumor microenvironment, particularly through crosstalk with immune cells, cancer-associated fibroblasts, and adipocytes. Importantly, metabolic adaptations have been implicated in the emergence of cancer stem-like cells and in the development of resistance to platinum-based chemotherapy and PARP inhibitors. We also further discuss emerging therapeutic strategies targeting metabolic vulnerabilities, as well as combinatorial approaches integrating metabolic therapy with immunotherapy and DNA damage repair inhibition. Finally, we highlight how advances in metabolomics and spatial profiling are improving our ability to map metabolic heterogeneity and guide precision therapies in OC. This review underscores metabolic plasticity as a promising therapeutic vulnerability for overcoming drug resistance and improving outcomes in OC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374702 | PMC |
http://dx.doi.org/10.2147/CMAR.S538281 | DOI Listing |
Funct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Front Immunol
September 2025
Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden.
Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.
Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.
Front Microbiol
August 2025
College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China.
Locoism refers to a neurological disorder in livestock caused by chronic ingestion of locoweeds, which contain toxic alkaloid swainsonine produced by the fungus . Therefore, reducing swainsonine levels not only prevents locoism but may also transform these toxic plants into animal feed. In this study, we identified a pivotal role for the gene in swainsonine biosynthesis.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Recent breakthroughs in tumor biology have redefined the tumor microenvironment as a dynamic ecosystem in which the nervous system has emerged as a pivotal regulator of oncogenesis. In addition to their classical developmental roles, neural‒tumor interactions orchestrate a sophisticated network that drives cancer initiation, stemness maintenance, metabolic reprogramming, and therapeutic evasion. This crosstalk operates through multimodal mechanisms, including paracrine signaling, electrophysiological interactions, and structural innervation guided by axon-derived guidance molecules.
View Article and Find Full Text PDF