Limited but localized: geochemical and biodiversity impacts of shale gas extraction on soil ecosystems.

Environ Sci Process Impacts

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid global expansion of shale gas extraction has intensified scrutiny of its environmental impact, yet research on terrestrial ecosystems remains limited compared to aquatic systems. To address this gap, we investigated the Fuling shale gas field in China's Sichuan Basin-a region of intensive hydraulic fracturing activity-to evaluate effects on soil geochemistry and fauna. We quantified hydraulic fracturing-associated tracers (, electrical conductivity (EC), chloride (Cl), strontium (Sr), and barium (Ba)) across three distance gradients (10 m, 50 m, and 100 m) from extraction well pads. While EC, Cl, Sr, and Ba concentrations were elevated at certain sampling sites near the extraction well pads, statistical analyses revealed no significant differences in the concentrations of these tracers across varying distance gradients. To assess ecological impacts, we integrated traditional morphological taxonomy with environmental DNA (eDNA) metabarcoding, enabling high-resolution characterization of soil fauna communities. Results indicated no significant alterations in community structure attributable to shale gas activities. A multiparameter index (MPI) synthesizing physicochemical and biological data further confirmed no measurable degradation of soil health. These findings suggest that current extraction practices in the Sichuan Basin have not yet caused serious soil contamination or ecological disruption within the studied spatial scope. However, as regional hydraulic fracturing intensifies, long-term monitoring of cumulative pressures and ecosystem resilience thresholds will be essential to mitigate latent risks.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5em00356cDOI Listing

Publication Analysis

Top Keywords

shale gas
16
gas extraction
8
hydraulic fracturing
8
distance gradients
8
extraction well
8
well pads
8
extraction
5
soil
5
limited localized
4
localized geochemical
4

Similar Publications

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Dissolved oxygen (DO) dramatically impacts the habitat use of many aquatic animals, particularly for air-breathing animals that rely on 'physical gills' for respiration while submerged. Invertebrates that use bubbles as physical gills directly uptake DO from the water for respiration. However, no vertebrate animals have yet been documented using physical gills.

View Article and Find Full Text PDF

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF