Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a clinically relevant opportunistic human fungal pathogen, Candida albicans is able to rapidly sense and adapt to changing microenvironments within the host, a process that is essential for its successful invasion and survival. Although studies have shown that the transcription factor Stp2 is the master regulator of environmental alkalinization, accumulating evidence supports a clear involvement of other participants in this adaptation process. Here, following a large-scale genetic screen, we identify the transcription factor Dal81 as an uncharacterized positive regulator of pH alkalinization in C. albicans. Dal81 influences the protein levels of Stp2. A mutant lacking DAL81 also fails to alkalinize both in vitro and in the phagolysosome, and this defective phenotype is further enhanced by deleting both factors in most cases. Notably, our results demonstrate that Dal81 physically interacts with Stp2 to co-regulate the expression of a broad set of downstream target genes related to metabolism of organic acids, oxoacids, carboxylic acids and amino acids. This coordinated regulation mode is required for the alkalinization process and plays a role in modulating commensalism and pathogenicity of C. albicans. Taken together, our findings elucidate the cooperative function of Dal81 with Stp2 in the nucleus to orchestrate the expression of downstream genes required for the survival and propagation of C. albicans in the host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373999PMC
http://dx.doi.org/10.1038/s41467-025-62953-xDOI Listing

Publication Analysis

Top Keywords

coordinated regulation
8
commensalism pathogenicity
8
transcription factor
8
dal81
5
alkalinization
4
regulation alkalinization
4
alkalinization transcription
4
transcription factors
4
factors promotes
4
promotes fungal
4

Similar Publications

Crystal Facet-Engineered Anion Regulation Enables Fast-Charging Stability in Lithium Metal Batteries.

Angew Chem Int Ed Engl

September 2025

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Engineering Resea

Lithium metal batteries (LMBs) offer exceptional energy density and output voltage. However, their practical application remains hindered by sluggish ion transport and uncontrolled lithium dendrite formation, particularly under fast-charging conditions. Here, we report a facet-engineered anion-regulating separator based on zeolitic imidazolate framework-8 (ZIF-8) with preferentially crystal-exposed (110) facets.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

The ectoparasitic honeybee (Apis mellifera) mite Tropilaelaps mercedesae represents a serious threat to Asian apiculture and a growing concern for global beekeeping due to its high reproductive capacity and host adaptability. However, the regulatory mechanisms underlying its host adaptation across life stages remain poorly characterized. Here, we performed integrated transcriptomic, proteomic, and metabolomic analyses of female mites at 4 key postembryonic developmental stages: protonymphs, deutonymphs, mature adults, and reproductive adults.

View Article and Find Full Text PDF