Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Green hydrogen produced from water electrolyzers demonstrates higher efficiency and sustainability than industrial alkaline water electrolysis due to the membrane electrode assembly (MEA) design. However, random structure designs in current MEAs significantly increase the charge and mass transport resistance, leading to a decrease in energy efficiency. In contrast, the ordered structure design in MEA provides well-defined arrangements of pores, channels, or pathways within catalysts, catalyst layers, porous transport layers, and ion exchange membranes (IEMs). These ordered configurations facilitate efficient pathways for charge and mass transport. Particularly, in comparison with first-order structure, hierarchical structure designs exhibit more obvious advantages in reaction interface, charge, and mass transport. Recently, the diverse hierarchical structure in the MEA designs has demonstrated significant improvements in overall electrolysis efficiency in both proton exchange membrane (PEM) and anion exchange membrane (AEM) water electrolyzers. This review will examine recent advancements in hierarchical structure designs in the MEAs for water electrolyzers, focusing on innovations in fabrication methods and enhancement mechanisms, as well as their electrolysis performance. This review will provide comprehensive guidelines for designing highly efficient MEAs for both PEM and AEM electrolyzers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202510546DOI Listing

Publication Analysis

Top Keywords

hierarchical structure
16
water electrolyzers
12
structure designs
12
charge mass
12
mass transport
12
membrane electrode
8
electrode assembly
8
exchange membrane
8
review will
8
structure
7

Similar Publications

Integrating opinion dynamics and differential game modeling for sustainable groundwater management.

Water Res

September 2025

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.

View Article and Find Full Text PDF

Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets.

PLoS One

September 2025

Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.

Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.

View Article and Find Full Text PDF

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.

View Article and Find Full Text PDF