98%
921
2 minutes
20
Bisphenol A (BPA) is a frequently used endocrine-disrupting chemical widely distributed in the environment, necessitating effective removal strategies. This study aimed to isolate and characterize a highly efficient BPA-degrading bacterial strain, Sphingobium yanoikuyae GDP, and to elucidate the enzymatic degradation pathways of BPA mediated by the P450 enzyme BisdB, including the identification of novel metabolites using C stable isotope-assisted untargeted liquid chromatography-tandem mass spectrometry. In this study, a BPA-degrading microbial community, D45, was isolated from contaminated soil and degraded 400 mg L of BPA within 24 h. Ten metabolites were identified during BPA degradation by D45, including 4,4'-dihydroxybenzophenone (4-DHBP), a novel metabolite. Sphingobium yanoikuyae strain GDP was subsequently obtained, which degraded BPA via the same routes as D45 but exhibited enhanced BPA-degrading efficiency. Genomic and gene expression analyses revealed that a P450 enzyme BisdB was essential for BPA degradation. BisdB produced at least eight metabolites, including 4-DHBP, through stepwise BPA catalysis, two of which were challenging to transform further. This study revealed the precise role of bacterial P450 in BPA degradation and illustrated the complete BPA degradation pathways. These findings provide potential opportunities for synthetic biology-based applications of the GDP strain and BisdB to degrade BPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.139582 | DOI Listing |
Mol Cell Endocrinol
September 2025
Department of Epidemiology, University of Michigan, Ann Arbor, USA. Electronic address:
Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.
View Article and Find Full Text PDFBisphenol A (BPA) and its analogs are collectively termed bisphenol compounds (BPs), which are predominantly utilized in the manufacturing of polycarbonate plastics and epoxy resins. BPs are ubiquitous in diverse environmental matrices, human tissues, and metabolic products. Extensive research has demonstrated that BPs exert adverse effects on the nervous, reproductive, immune, and metabolic systems.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Center for Global Health, the Key Laboratory of Modern Toxicology, Ministry of Education, Department of Hygienic Analysis and Detection, School of Public Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Bisphenol F (BPF), a widely used substitute for bisphenol A (BPA), has raised growing concerns due to its potential metabolic toxicity. Recent studies suggest that BPF exposure is associated with lipid accumulation and non-alcoholic fatty liver disease (NAFLD)-like changes, however, the underlying mechanisms remain poorly understood. This study was performed to investigate the BPF-induced NAFLD-like changes through the lipid degradative pathway, which via an unrecognized defect of lipophagy mediated by Adipose Triglyceride Lipase (ATGL)-Sirtuin 1 (SIRT1)-Peroxisome proliferator-activated receptor α (PPARα) signaling axis.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 2
Bisphenol A (BPA) and di-n-butyl phthalate (DBP) are ubiquitous endocrine disruptors implicated in bone metabolism disorders, but their precise mechanisms remain unclear. Here, we demonstrated that BPA and DBP bidirectionally disrupt bone homeostasis by targeting CD36 in bone marrow-derived mesenchymal stem cells (BMSCs). Mechanistically, both chemicals upregulate CD36 expression, which sequesters ATG9a at the Golgi apparatus, inhibits autophagosome maturation, and thereby impairs osteogenic differentiation of BMSCs, as evidenced by reduced ALP and RUNX-2 levels.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Xihua University, Chengdu 610039, PR China. Electronic address:
With the increasing concern for ecological environmental and food safety, the development of synergistic systems integrating efficient bisphenol trace sensing and green photocatalytic degradation has emerged as a current research focus. In this study, a novel surface-enhanced Raman scattering (SERS) sensing-degradation integrated platform was successfully developed for the detection and degradation of bisphenol through the uniform modification of hydrogen-bonded organic framework nanorods loaded with gold nanoparticles (HOFs@Au). Based on the remarkable molecular enrichment effect of the porous structure of HOFs and the strong localized surface plasmon resonance (LSPR) effect from the AuNPs, the composite system exhibited excellent trace detection performance.
View Article and Find Full Text PDF