98%
921
2 minutes
20
The meninges serve as critical barriers that maintain immune homeostasis in the central nervous system (CNS) and play vital roles in immune surveillance and defense. Traditionally, the brain has been regarded as an "immune-privileged" organ owing to the absence of conventional lymphatic vessels. However, the rediscovery of meningeal lymphatic vessels (MLVs) has revealed a mechanism for the directional transport of cerebrospinal fluid (CSF) to the deep cervical lymph nodes (dCLNs), demonstrating that the brain possesses a distinct fluid communication pathway with the peripheral system that is independent of blood circulation. Additionally, the identification of the glymphatic system has revealed a perivascular mechanism for solute exchange between the CSF and brain parenchyma, primarily mediated by the astrocytic water channel protein aquaporin-4 (AQP4). These discoveries have significantly expanded our understanding of brain fluid dynamics and CNS homeostasis. This review provides a comprehensive overview of the structure, regulation, and function of MLVs and the glymphatic system, which together constitute lymphatic system of the brain. We also discuss recent evidence, particularly conflicting perspectives, on the role of meningeal immunity in various central nervous system (CNS) disorders, such as multiple sclerosis, Parkinson's disease, and epilepsy. Furthermore, we explore the therapeutic potential of targeting the brain lymphatic system to treat these conditions. Given their critical roles in CNS homeostasis, MLVs and the glymphatic system have emerged as promising therapeutic targets, potentially offering novel treatment strategies for currently incurable neurological diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364799 | PMC |
http://dx.doi.org/10.1007/s10571-025-01598-2 | DOI Listing |
Neuroscience
September 2025
Nanjing Research Institute of Electronic Technology, Nanjing 210039, China. Electronic address:
Sleep disorders encompass a range of diseases and symptoms that disrupt individual sleep patterns, degrade sleep quality, and diminish sleep efficiency. Currently, the mechanisms governing sleep regulation and the etiology of sleep disorders remain unclear, leading to clinical treatments that are primarily symptomatic due to the absence of precise intervention methods. Recent studies suggest that glymphatic-meningeal lymphatic route is responsible for the clearance of macromolecular metabolites from the brain, thus playing a pivotal role in maintaining sleep homeostasis and circadian rhythm.
View Article and Find Full Text PDFSleep Med Clin
September 2025
Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Via San Pio X, 4, Tricase, Lecce 73039, Italy.
Parkinson's disease (PD) is characterized by both motor and nonmotor symptoms, including significant sleep disturbances. The glymphatic system, a brain-wide clearance mechanism active during sleep, may play a key role in PD pathology by impairing the removal of toxic proteins like α-synuclein. Dysfunctional glymphatic clearance and disrupted sleep may create a cycle that accelerates neurodegeneration.
View Article and Find Full Text PDFPLoS One
September 2025
Center for Hypothalamic Research and Department of Internal Medicine, UT Southwestern Medical Center, Harry Hines blvd, Dallas, Texas, Unites States of America.
The anti-inflammatory cholinergic pathway describes the interaction between cholinergic vagal nerves and splenic immune cells, yet the exact mechanisms underlying the anti-inflammatory cholinergic pathway remain disputed. Here, we mapped the expression of key molecular components of the anti-inflammatory cholinergic pathway in the adult mouse using RNAScope in situ hybridization (ISH) and quantitative PCR (qPCR). In C57BL/6J wild-type male mice, we observed the expression of choline acetyltransferase (Chat) and alpha 7 nicotinic acetylcholine receptor (Chrna7) in various autonomic neurons throughout the body, but not in the spleen, even after bacterial lipopolysaccharide (LPS) treatment.
View Article and Find Full Text PDFMar Biotechnol (NY)
September 2025
Engineering Research Center of Polyploidy fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
Triploid cyprinid fish (TCF, 3N = 150) is a novel hybrid fish showing great disease resistance during aquaculture processes. However, the majority of Aeromonas strains act as opportunistic pathogens that can cause a variety of diseases and pose a notable health risk. In this investigation, a novel Aeromonas sp.
View Article and Find Full Text PDFImmunol Rev
September 2025
Laboratory of Barrier Immunity, Division of Molecular Hematology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
The skin is the outermost organ that serves as the host's live, microbiota-inhabited physical border, evolved to cope with continuous confrontation by a wide variety of environmental elements. This dynamic borderline is prone to injury and damage. Therefore, to deliver on the critical demands for protection, skin is tightly associated with innate and adaptive defense mechanisms that ensure homeostatic tissue barrier integrity.
View Article and Find Full Text PDF