Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Tick-borne encephalitis virus (TBEV) is a neurotropic flavivirus that causes thousands of human infections annually. Viral tropism in the brain is determined by the presence of necessary receptors, entry factors, and the ability of the virus to overcome host defenses. The viral structural proteins, pre-membrane (prM), and envelope (E) play an important role in receptor binding, membrane fusion, particle maturation, and antibody neutralization. To understand how these proteins influence virus distribution and tropism in the brain, we generated a chimeric virus harboring the prM and ectodomain of E from TBEV in the background of the low-pathogenic Langat virus (LGTV). We solved the atomic structures of both the chimeric virus and LGTV to compare them to the known TBEV structure. We show that this chimeric virus remains low-pathogenic, while being structurally and antigenically similar to TBEV. Using 3D optical whole brain imaging combined with immunohistochemistry, we found that both LGTV and the chimeric virus primarily infect the cerebral cortex, with no significant differences in their localization or tropism. In contrast, TBEV shows high infection of the cerebellum and a strong preference toward Purkinje cells, indicating that factors other than the prM and E proteins are important for determining TBEV tropism in the brain. Together, this provides new insights into the roles of the structural and non-structural proteins of tick-borne flaviviruses.

Importance: Although an effective vaccine exists, there is no treatment for those infected by the tick-borne encephalitis virus (TBEV). This study aimed to better understand how the virus's surface proteins influence viral tropism and pathogenicity. We created a chimeric virus with prM and E proteins of TBEV in the genetic background of the low-pathogenic Langat virus (LGTV). The chimeric virus remained low pathogenic, similar to LGTV. Both viruses infected similar brain regions, while TBEV showed a strong preference for the cerebellum and Purkinje cells. This means that other parts of the virus, such as non-structural proteins or NCR, likely decide how the virus behaves in the brain. This study also presents the first cryogenic electron microscopy structure of LGTV, the first whole-brain imaging of TBEV infection in mouse brain, and a new model system to study surface proteins in tick-borne flaviviruses-laying groundwork for future studies on viral tropism, antibody cross-reactivity, and virus-receptor interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1128/jvi.00870-25DOI Listing

Publication Analysis

Top Keywords

chimeric virus
24
virus
15
tick-borne encephalitis
12
encephalitis virus
12
viral tropism
12
tropism brain
12
virus lgtv
12
tbev
10
proteins
9
virus tbev
8

Similar Publications

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

Despite the clinical success of redirected T cells in the setting of cancer adoptive cell immunotherapy, patients may exhibit resistance to treatment, resulting in uncontrolled disease and relapses. This phenomenon partly relies on impaired -produced T cell metabolic fitness, including a decreased respiratory reserve, as well as a greater sensitivity to tumor-mediated metabolic stress. To improve the respiratory capacity of cultured T cells, we sought to target the nicotinamide adenine dinucleotide/sirtuine-1/reactive oxygen species (ROS) axis through supplementation of culture medium with resveratrol.

View Article and Find Full Text PDF

Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.

Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.

View Article and Find Full Text PDF

Research on the construction method and characterization of neutralizing mouse-canine chimeric antibody against canine distemper virus.

Virology

August 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Pr

Canine distemper (CD) is an acute infectious disease that poses significant health risks to canines. Neutralizing monoclonal antibody (mAb) therapy has demonstrated substantial efficacy in prevent CDV infection. However, immune rejection reactions prevent the use of mouse-derived mAbs in the prophylactic protection of CD.

View Article and Find Full Text PDF