Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Polyamine metabolism is closely associated with tumorigenesis, progression, and the tumor microenvironment (TME). This study aimed to determine whether polyamine metabolism-related genes (PMRGs) could predict prognosis and immunotherapy efficacy in Breast Cancer (BC).

Methods: We conducted a comprehensive multi-omics analysis of PMRG expression profiles in BC. Consensus cluster analysis was used to identify PMRG expression subtypes in the METABRIC cohort. Univariate and multivariate Cox regression analyses were performed to identify independent prognostic genes, which were subsequently used to construct a predictive model for BC, along with a novel nomogram based on PMRGs. The model was validated using an independent cohort (GSE86166). Independent prognostic genes were further verified in BC tissues using quantitative real-time PCR (qRT-PCR), Semi-quantitative Western blot, and immunohistochemistry. Additionally, we analyzed the immune microenvironment and enriched pathways across different subtypes using multiple algorithms. Finally, the "oncoPredict" R package was used to assess potential drug sensitivities in high-risk and low-risk groups.

Results: Seventeen polyamine metabolism genes were identified. PMRGs were abundantly expressed in tumor cells, with 12 survival-related genes being selected. In the METABRIC cohort, two PMRG expression subtypes were identified, with cancer- and immune-related pathways being more active in cluster B, which was associated with a worse prognosis. Six genes were used to construct a prognostic model through univariate and multivariate Cox regression analyses. The predictive performance of the polyamine metabolism model was validated by ROC curve analysis (training cohort: METABRIC, AUC3years=0.684; validation cohort: GSE86166, AUC3years=0.682). A nomogram combining risk scores and clinicopathological features was constructed. Decision Curve Analysis (DCA) demonstrated that the model could guide clinical treatment strategies. Four high-risk independent prognostic factors (, , , and ) were validated as being upregulated in breast cancer tissues. The model successfully stratified BC patients into high-risk and low-risk groups, with the high-risk group exhibiting poorer clinical outcomes. Functional analysis revealed significant differences in immune status and drug sensitivity between high-risk and low-risk groups.

Conclusions: This study elucidated the biological characteristics of PMRG expression subtypes in BC, identifying a polyamine-related prognostic signature and four novel biomarkers to accurately predict prognosis and immunotherapy response in BC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350266PMC
http://dx.doi.org/10.3389/fonc.2025.1613458DOI Listing

Publication Analysis

Top Keywords

polyamine metabolism
16
pmrg expression
16
prognosis immunotherapy
12
breast cancer
12
expression subtypes
12
independent prognostic
12
high-risk low-risk
12
immunotherapy response
8
predict prognosis
8
metabric cohort
8

Similar Publications

An adaptive and label-free colorimetric assay for EDTA using copper(II)-aptamer complexes as soft nanozymes.

Anal Chim Acta

November 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of A

Background: Copper is a vital trace element that plays a crucial role in various physiological processes due to its ability to exist in multiple oxidation states. Inspired by natural enzymes, researchers have developed copper-based nanozymes that mimic enzyme functions, offering cost-effective and stable alternatives to traditional enzymes. Despite their promising properties, the design and synthesis of these nanozymes can be complex and challenging.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.

View Article and Find Full Text PDF

Background: Dysregulation of polyamine synthesis has been observed in various cancer cell types. A novel approach to depriving cancer cells of polyamines involves the use of difluoromethylornithine (DFMO) to block polyamine biosynthesis in combination with AMXT 1501, a potent inhibitor of polyamine transport. Preclinical mouse tumor models showed that the combination of AMXT 1501 plus DFMO had strong antitumor activity, together with evidence of a stimulated immune response against tumors.

View Article and Find Full Text PDF

Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).

View Article and Find Full Text PDF

An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established to determine -(1,3-dimethylbutyl)--phenyl--phenylenediamine-quinone (6PPD-Q) in human urine and dust in order to understand the internal and external exposure levels in humans. The sample preparation conditions were systematically investigated and the chromatographic conditions and MS parameters were optimized. Briefly, internal standard C-6PPD-Q (0.

View Article and Find Full Text PDF