Edible cellulose-based photonic crystals with low-temperature response for food sensing.

Carbohydr Polym

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu 610064, China. Elect

Published: November 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Responsive photonic crystals offer the advantages of zero energy consumption and easy recognition, making them ideal for food sensing applications. Temperature monitoring during food storage is crucial for ensuring food safety. However, non-toxic, safe, food-grade temperature sensors are still limited, and tuning the responsive range to accommodate extremely low temperatures remains a significant challenge. Here, we demonstrate edible photonic crystal materials with low-temperatures response for food sensing, fabricated through the co-assembly of hydroxypropyl cellulose (HPC) with edible ethanol. The ethanol effectively reduces freezing point of the HPC photonic crystals, allowing them to maintain the responsiveness at temperatures as low as -35 °C. Moreover, adjusting the ethanol concentration allows for modulation of the structural color and operational temperature range. The moldability of the photonic crystals facilitates the design of intricate patterns or informative labels, enabling the development of a colorimetric sensor capable of visually monitoring storage conditions at -20 °C. These green, safe, and responsive characteristics make cellulose-based photonic crystals promising candidates for applications such as displays, health monitoring, and smart sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2025.124029DOI Listing

Publication Analysis

Top Keywords

photonic crystals
20
food sensing
12
cellulose-based photonic
8
response food
8
photonic
6
crystals
5
food
5
edible cellulose-based
4
crystals low-temperature
4
low-temperature response
4

Similar Publications

[HgX] Linear Group Enabled Ultraviolet Birefringent Crystal RbHgBr with Strong Optical Anisotropy and Wide Bandgap.

Adv Sci (Weinh)

September 2025

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Ur

Birefringent crystals are pivotal for modern optical modulation technologies, yet developing high-performance birefringent materials with large birefringence (Δn), wide bandgaps, and scalable synthesis remains a significant challenge. Different from the traditional planar [MQ] and distorted [MQ] (n ≥ 4) polyhedral units, a "linear-group" design strategy is proposed, targeting heavy-metal halides with [HgX] (X = halides) coordination modes to exploit their inherent polarizability anisotropy. Through systematic experimental investigations in the ternary A-Hg-X (A = Rb, Cs; X = Br, I) system, six novel Hg-based halides were synthesized.

View Article and Find Full Text PDF

A Theoretical Investigation of Third-Order Optical Susceptibility in Metronidazolium-Picrate Crystal and Its Potential for Quantum Memory Applications.

ACS Omega

September 2025

Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Universidade Estadual de Goiás, Anápolis, GO 75001-970, Brazil.

In this work, we report a theoretical investigation of the third-order nonlinear optical properties of the metronidazolium-picrate salt. The effects of the crystal environment are accounted for by the Iterative Charge Embedding approach, and the electronic calculations are carried out at the DFT (CAM-B3LYP/6-311++G-(d,p)) level. Furthermore, we use the results to parametrize a cavity Quantum Electrodynamics model for a quantum memory based on the Off-Resonant Cascaded Absorption protocol.

View Article and Find Full Text PDF

Ginseng exosomes are a kind of promising extracellular vesicle containing unique bioactive components. However, the investigation on ginseng-derived exosomes is still in the initial stage. This study developed a photonic crystal-based Bragg scattering coupling electrochemiluminescence (BSC-ECL) biosensor for detection of miRNA396a-3p in exosome-like nanoparticles (GENs) and ginseng exosomes (Gexos).

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF