Dual-mode switching of a bidirectional self-rectifying Ti/HfO/Ti device for bipolar and electronic complementary resistive switching.

Nanoscale Horiz

Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Republic of Korea.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study explores the dual-mode switching behavior of bidirectional self-rectifying Ti/HfO/Ti (THT) memristors to address the growing demand for efficient in-memory computing. The device operates in electronic bipolar resistive switching (eBRS) and electronic complementary resistive switching (eCRS) modes with bidirectional self-rectifying properties, differing from conventional unidirectional self-rectifying devices. The device achieves stable dual-mode switching by utilizing electronic trapping/detrapping at oxide layers formed at the top and bottom interfaces, while the HfO layer in the middle serves as a blocking layer. The characteristic bidirectional dual-mode self-rectifying switching offers efficient parity bit generation through in-memory parity generation, minimizing overhead and potential errors during data delivery. When the THT memristors are integrated into a 1 × line cell configuration, the eBRS mode device as a 1-bit encoded memory cell and the eCRS mode device as a 1-bit parity cell within the given interconnect line enable the desired in-memory parity generation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nh00256gDOI Listing

Publication Analysis

Top Keywords

dual-mode switching
12
bidirectional self-rectifying
12
resistive switching
12
self-rectifying ti/hfo/ti
8
electronic complementary
8
complementary resistive
8
tht memristors
8
in-memory parity
8
parity generation
8
mode device
8

Similar Publications

Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

Microsyst Nanoeng

September 2025

Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.

View Article and Find Full Text PDF

pH-gated bidirectional nanoassembly switches: self-ratiometric D-penicillamine sensing AIE-active Au(I)-TCEP-Cd(II) coordination dynamics.

Anal Methods

September 2025

Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Self-assembly is regarded as a facile method to fabricate luminescent nanomaterials with aggregation induced emission (AIE) properties for optical sensor design. In this work, a pH-controlled self-ratiometric sensing platform utilizing aggregation-induced emission (AIE)-active Au(I)-TCEP-Cd(II) nanoaggregates was developed for highly reliable D-penicillamine (DPA) detection. Through stoichiometric coordination with Cd, oligomeric Au(I)-tris(2-carboxyethyl)phosphine (TCEP) complexes could self-assemble into snowflake-like nanoaggregates (∼100 nm) with strong yellow emission (540 nm) and excellent aqueous stability.

View Article and Find Full Text PDF

We developed a dual-mode fluorescence sensor based on 4,4'-stilbenedicarboxylic acid (HSDC) for the sequential detection of iron ions (Fe) and vitamin C (VC) in hawthorn (genus Crataegus), a key traditional Chinese medicine (TCM). By leveraging the aggregation-induced emission (AIE) properties of HSDC, the sensor quantifies Fe quantification via fluorescence quenching ("turn-off") and subsequently detects VC through Fe reduction-triggered signal recovery ("turn-on"). This label-free strategy demonstrates high sensitivity, with linear ranges of 5.

View Article and Find Full Text PDF

Terahertz (THz) absorbers with ultra-broadband and ultra-narrowband absorption capabilities are crucial for integrated and efficient terahertz modulation. This study proposes a dual-mode tunable terahertz absorber based on the phase transition characteristics of vanadium dioxide (VO), enabling dynamic switching between narrowband and broadband absorption through its insulating-to-metallic transition. In the insulating state, the excitation of quasi-bound states in the continuum (Q-BIC) resonance geometric parameter modulation of silicon pillars is investigated, with its physical mechanism elucidated impedance matching theory and multipole analysis.

View Article and Find Full Text PDF

Light detection and ranging (LiDAR) is widely used for active three-dimensional (3D) perception. Beam scanning LiDAR provides high accuracy and long detection range with limited detection efficiency, while flash LiDAR can achieve high-efficiency detection through the snapshot approach at the expense of reduced accuracy and range. With the synergy of these distinct detection approaches, we develop a miniaturized dual-mode, reconfigurable beam forming device by cascading Pancharatnam-Berry phase and propagation phase metasurfaces, integrated with a micro-actuator.

View Article and Find Full Text PDF