98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5c07896 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China. Electronic address: wlsu
Nitrogen-containing heterocyclic compounds (NHCs), widely present in industrial wastewater, pose significant environmental and health risks, yet their identification and characterization remain poorly understood. Herein, we developed a diagnostic fragment list comprising 20 nitrogen-containing fragments for NHCs, by integrating chemical information from Pubchem with the NIST mass spectral library. Leveraging this list, we employed a diagnostic fragment-assisted nontarget screening approach and identified 151 NHCs in iron and steel industry wastewater.
View Article and Find Full Text PDFEnviron Pollut
September 2025
School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Ozone (O) is a primary pollutant affecting air quality in China, whose formation rate was non-linearly based on volatile organic compounds (VOCs) and nitrogen oxides (NOx). A comprehensive understanding of the key drivers governing O formation and its sensitivity to precursor variations presents a persistent research challenge, stemming from the complex interplay of underlying photochemistry, meteorology, and topography. To address this knowledge gap, we conducted synchronous measurements of O and its precursors at both an urban (JPU) and a mountain (LM) site in a typical city in eastern China, enabling concurrent evaluation of O formation sensitivity and diagnostic analysis of its underlying mechanisms.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
September 2025
New York State Department of Environmental Conservation, Division of Air Resources, Albany, NY, USA.
New York State has enacted public policies that have enabled a multi-decadal trend in air quality improvement. However, the benefits of cleaner air are not felt equally across the populace, with individuals residing in disadvantaged communities bearing disproportionate air pollution burdens due to proximity of polluting sources, in addition to other environmental stressors. To address this disparity, the New York State Department of Environmental Conservation contracted with Aclima, Inc.
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.
View Article and Find Full Text PDF