Leveraging an Image-Enhanced Cross-Modal Fusion Network for Radiology Report Generation.

J Comput Biol

School of Information Science and Technology, Dalian Maritime University, Dalian, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiology report generation (RRG) tasks leverage computer-aided technology to automatically produce descriptive text reports for medical images, aiming to ease radiologists' workload, reduce misdiagnosis rates, and lessen the pressure on medical resources. However, previous works have yet to focus on enhancing feature extraction of low-quality images, incorporating cross-modal interaction information, and mitigating latency in report generation. We propose an Image-Enhanced Cross-Modal Fusion Network (IFNet) for automatic RRG to tackle these challenges. IFNet includes three key components. First, the image enhancement module enhances the detailed representation of typical and atypical structures in X-ray images, thereby boosting detection success rates. Second, the cross-modal fusion networks efficiently and comprehensively capture the interactions of cross-modal features. Finally, a more efficient transformer report generation module is designed to optimize report generation efficiency while being suitable for low-resource devices. Experimental results on public datasets IU X-ray and MIMIC-CXR demonstrate that IFNet significantly outperforms the current state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15578666251365959DOI Listing

Publication Analysis

Top Keywords

report generation
20
cross-modal fusion
12
image-enhanced cross-modal
8
fusion network
8
radiology report
8
cross-modal
5
report
5
generation
5
leveraging image-enhanced
4
network radiology
4

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Attitudes and ethical beliefs of Russian psychiatrists towards the use of coercive treatment practices.

Int J Law Psychiatry

September 2025

Child and Adolescent Psychiatry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Regional forensic psychiatric clinic Sala, Sala, Sweden. Electronic address:

In many countries little is known about the attitudes and ethical beliefs of practicing psychiatrists towards the use of coercive practices. This is true as regards Russia where coercion was used for political purposes during the Soviet period. However, substantial changes have occurred in the psychiatric system in recent decades with a focus on patients' rights and the idea of consent.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

In this work, we report a facile strategy for synthesizing hydrophilic Gd(OH) sheets via a Gd-based interfacial precipitation reaction at the interface of organosilane-modified GdO nanoparticles and a cation exchange resin. This strategy, independent of the specific organosilane used, produces two-dimensional sheets with a distinct lamellar structure and excellent aqueous dispersibility. Characterization confirms the formation of Gd(OH) sheets with promising fluorescent and magnetic properties.

View Article and Find Full Text PDF