98%
921
2 minutes
20
Tumor invasion constitutes a multifaceted process encompassing collective cellular migration and dynamic cell-fate transitions. Although these aspects have been studied separately by physicists and biologists, their spatiotemporal coupling remains unclear. To bridge this gap, we introduce a tumor-adipose assembloid model that facilitates live tracking and temporal analysis of cancer cells and adipocytes. The tumor assembloids manifest two discrete phases of morphogenic behavior, delineated by the reprogramming of adipocytes. In the initial phase, the biophysical interactions between cancer cells and adipocytes can be modeled as contact between viscoelastic drops. This interaction precedes the adipocytes' dedifferentiation and subsequent myofibrogenic reprogramming. The emergence of adipocyte-derived myofibroblasts instigates assembloid invasion through the mechanical remodeling of surrounding collagen networks. Our findings unveil a paradigm shift in understanding the evolutionary dynamics of heterotypic multicellular systems, wherein cell-fate transitions act as catalytic events that initiate serial patterns of collective morphogenesis via alterations in extracellular biophysical interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cels.2025.101353 | DOI Listing |
During gastrulation, dynamic interplay among cell signaling pathways dictates cell fate decisions. While extensive studies have elucidated their critical roles in morphological regulation, how these signals orchestrate the epigenome to confer developmental competence remains unclear. In this study, we demonstrate that H3K9me3-marked facultative heterochromatin domains undergo global reorganization during differentiation of human pluripotent stem cells into mesoderm and endoderm, which arise through epithelial-mesenchymal transition (EMT), but not into ectoderm, which retains epithelial state.
View Article and Find Full Text PDFEMBO Rep
September 2025
School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
Early animal development can be remarkably variable, influenced by lineage-specific reproductive strategies and adaptations. Yet, early embryogenesis is also strikingly conserved in certain groups, such as Spiralia. In this clade, a shared cleavage program (i.
View Article and Find Full Text PDFCell
August 2025
College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Haploid induction (HI) through stress-treated microspore culture has gained significant attention for over half a century, yet the molecular mechanism underlying microspore fate transition for androgenesis remains poorly understood. Here, we demonstrate that microspore-specific expression of BABY BOOM (BBM) is sufficient to induce microspore cell fate transition and in vivo androgenesis in both tobacco and rice, effectively bypassing the requirement for stress treatment. We further identify BBM-activated Androgenesis Regulator 1 (BAR1) as a novel downstream effector of BBM that promotes microspore reprogramming.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
September 2025
Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.. Electronic address:
Epigenetic regulation is fundamental to hematopoiesis, influencing stem cell fate, lineage commitment, and the development of hematologic diseases. Recent technological innovations have transitioned from traditional genetic editing towards programmable, reversible epigenetic modulation without altering the DNA sequence. This review explores the evolution of epigenetic editing platforms, from zinc finger proteins and TALEs to the transformative CRISPR-dCas9 system, and introduces next-generation technologies leveraging dCas12, dCas13, and modular RNA-guided systems.
View Article and Find Full Text PDF