Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We compared the qualitative and quantitative quality of prostate conventional T2-weighted imaging and T2-weighted imaging with deep-learning reconstruction. Patients with suspected prostate cancer undergoing magnetic resonance imaging between April 2022 and June 2023 were included. Quantitative analysis was performed to determine the signal-to-noise and contrast ratios of the perirectal fat tissue, internal obturator muscle, and pubic tubercle. Eight periprostatic anatomical structures, overall image quality, and motion artifacts were evaluated by two radiologists using 5- or 4-point scales. Qualitative analysis results were compared to determine the agreement between the two radiologists. In total, 106 patients (mean age: 71 ± 8.3 years; 106 men) were included in this study. The acquisition time for conventional T2-weighted imaging and T2-weighted imaging with deep-learning reconstruction was 4 min and 16 s and 2 min and 12 s, respectively. The signal-to-noise ratio of the perirectal fat tissue and internal obturator muscle and contrast ratio of fat/muscle and bone/muscle determined via T2-weighted imaging with deep-learning reconstruction were significantly superior to those determined via conventional T2-weighted imaging (both < 0.01). Compared with conventional T2-weighted imaging, T2-weighted imaging with deep-learning reconstruction showed significant improvement in the visualization of the periprostatic anatomy, overall image quality, and motion artifacts (both < 0.05). Compared with conventional methods, T2-weighted imaging with deep-learning reconstruction facilitated the acquisition of good-quality magnetic resonance images of the prostate within a shorter acquisition time. T2-weighted imaging with deep-learning reconstruction will aid clinicians in diagnosing prostate cancer with shortened acquisition time while maintaining quantitative and qualitative image properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320318PMC
http://dx.doi.org/10.18999/nagjms.87.2.264DOI Listing

Publication Analysis

Top Keywords

t2-weighted imaging
44
deep-learning reconstruction
28
imaging deep-learning
24
acquisition time
16
conventional t2-weighted
16
image quality
12
imaging
12
imaging t2-weighted
12
t2-weighted
11
time t2-weighted
8

Similar Publications

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF

Background: Low-grade endometrial stromal sarcoma (LG-ESS) is a rare malignant tumor of the female reproductive system with atypical clinical symptoms and slow progression.

Case: A 44-year-old female with a history of intermittent severe dysmenorrhea, previous laparoscopic myomectomy, and uterine artery embolization (UAE) presented with rapidly enlarging pelvic masses. Imaging revealed uterine masses suggestive of leiomyomas, although an adnexal origin could not be excluded.

View Article and Find Full Text PDF

Introduction: Synovial sarcoma (SS) is one of the most prevalent malignant soft tissue sarcomas in children and adolescents. Pediatric populations often present with atypical features, complicating the differentiation from benign intramuscular venous malformations (VMs).

​​case Presentation: An 11-year-old male with a four-year history of progressive right plantar pain and a compressible intramuscular mass.

View Article and Find Full Text PDF

Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.

Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.

View Article and Find Full Text PDF

Two-Step Semi-Automated Classification of Choroidal Metastases on MRI: Orbit Localization via Bounding Boxes Followed by Binary Classification via Evolutionary Strategies.

AJNR Am J Neuroradiol

September 2025

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).

Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.

Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.

View Article and Find Full Text PDF