98%
921
2 minutes
20
Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.
Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.
Study Type: Retrospective.
Population: Surgically diagnosed rectal cancer patients (n = 635): training (n = 259) and internal validation (n = 112) from center 1; center 2 (n = 264) for external validation.
Field Strength/sequence: 1.5/3T, T2-weighted image (T2WI) using fast spin echo sequence.
Assessment: Four models (clinical, habitat radiomics, DL, fusion) were developed for preoperative TDs diagnosis (184 TDs positive). T2WI was segmented using nnUNet, and habitat radiomics and DL features were extracted separately. Clinical parameters were analyzed independently. The fusion model integrated selected features from all three approaches through two-stage selection. Disease-free survival (DFS) analysis was used to assess the models' prognostic performance.
Statistical Tests: Intraclass correlation coefficient (ICC), logistic regression, Mann-Whitney U tests, Chi-squared tests, LASSO, area under the curve (AUC), decision curve analysis (DCA), calibration curves, Kaplan-Meier analysis.
Results: The AUCs for the four models ranged from 0.778 to 0.930 in the training set. In the internal validation cohort, the AUCs of clinical, habitat radiomics, DL, and fusion models were 0.785 (95% CI 0.767-0.803), 0.827 (95% CI 0.809-0.845), 0.828 (95% CI 0.815-0.841), and 0.862 (95% CI 0.828-0.896), respectively. In the external validation cohort, the corresponding AUCs were 0.711 (95% CI 0.599-0.644), 0.817 (95% CI 0.801-0.833), 0.759 (95% CI 0.743-0.773), and 0.820 (95% CI 0.770-0.860), respectively. TDs-positive patients predicted by the fusion model had significantly poorer DFS (median: 30.7 months) than TDs-negative patients (median follow-up period: 39.9 months).
Data Conclusion: A fusion model may identify TDs in rectal cancer and could allow to stratify DFS risk.
Technical Efficacy Stage: 3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.70075 | DOI Listing |
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
J Magn Reson Imaging
September 2025
Department of Surgery, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE.
J Magn Reson Imaging
September 2025
Key Laboratory of Intelligent Medical Imaging of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.
Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.
J Neurooncol
September 2025
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.
Quant Imaging Med Surg
September 2025
Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: The application of habitat analysis is anticipated to enhance the diagnostic efficacy of magnetic resonance imaging (MRI) in prostate cancer (PCa) by providing a more accurate reflection of the microenvironmental characteristics within the lesion. The objective of this study was to investigate the feasibility of multisequence and multiregional MRI-based habitat analysis in the differentiation of PCa and benign prostatic hyperplasia (BPH).
Methods: We retrospectively evaluated the data of 673 cases from The Second Affiliated Hospital of Nanchang University and The First Hospital of Xiushui who received MRI examination of the prostate and pathologically confirmed diagnosis of PCa or BPH.