Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular diseases such as atherosclerosis, aneurysms, and peripheral arterial disease remain leading causes of morbidity and mortality, with current treatments primarily managing symptoms rather than addressing underlying molecular drivers. Gene therapy offers a promising avenue for targeted intervention, and recent advances in multi-omics approaches-including genomics, transcriptomics, and epigenetics-are enhancing the precision and efficacy of these therapies. High-throughput sequencing and integrative omics analyses have facilitated the identification of causal genes, non-coding RNAs, and epigenetic regulators involved in vascular pathology. This review examines how multi-omics frameworks inform gene therapy design, from genomic editing of cardiovascular disease loci to transcriptome-guided RNA therapies and epigenetic modulation of disease states. We highlight emerging applications such as CRISPR-based interventions, RNA therapeutics, and individualised precision medicine strategies. Additionally, we address analytical challenges, implementation hurdles, and ethical considerations in translating multi-omics-driven gene therapies into clinical practice. By integrating systems biology and advanced computational methods, the convergence of multi-omics and gene therapy holds transformative potential for vascular medicine, offering new avenues for disease modification and patient-specific therapeutic solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2025.2544786DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
vascular diseases
8
genomics transcriptomics
8
gene
5
multi-omics
4
multi-omics approaches
4
approaches gene
4
therapy
4
vascular
4
therapy vascular
4

Similar Publications

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Can Sex-based Variations in the Immune Responses to AAV Gene Therapy Affect Safety and Efficacy? A Review of Current Understanding.

AAPS J

September 2025

Gene Transfer and Immunogenicity Branch, Division of Gene Therapy 2, Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, WO52 RM3124, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA.

As the field of gene therapy advances and as the importance of sex as a biological variable in shaping viral immune responses is recognized, the impact of sex on adeno-associated virus (AAV) vectors mediated gene therapies remain largely unexplored. Here we review current understanding of the immune response against AAV gene therapy as well as the knowledge of sex differences observed in viral responses. We discuss sex differences in innate immune mechanisms such as Toll-like receptor recognition and complement activation, as well as the functional responses of key immune cells such as dendritic cells, macrophages, and T/B cells that are involved in AAV immunogenicity.

View Article and Find Full Text PDF

Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.

Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.

View Article and Find Full Text PDF

Patients with primary plasma cell leukemia (pPCL), particularly those with extramedullary disease (EMD), face a poor prognosis even with chimeric antigen receptor (CAR)-T cell therapy. This case report describes a patient with relapsed/refractory pPCL and life-threatening malignant pleural effusion (PE) treated with intrapleural CAR-T cells targeting B-cell maturation antigens. CAR-T cell expansion within the PE was observed, along with a rapid reduction in leukemia cell count and PE volume.

View Article and Find Full Text PDF