98%
921
2 minutes
20
Neural stimulation provides significant therapeutic benefits for patients with neurological disorders. PEDOT:PSS has gained attention as a neural electrode material, but its poor mechanical stability due to continuous cyclic charge injection, which is especially severe on ultrathin substrates, remains a big challenge for its clinical utility. To address this problem, we developed a mechanically and electrochemically stable PEDOT:PSS-based microelectrode for neural stimulation by utilizing enhanced adhesion on the vertical interface between the three-dimensional (3D) nanostructured substrate. Our microelectrode design incorporates a fractal geometry that increases the perimeter-to-area ratio, coupled with nanostructured platinum to enhance the surface area. The simple PEDOT:PSS-coated microelectrode exhibited outstanding mechanical stability, evidenced by various metrologies, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM), which can facilitate wide industrial adoption. We further verified using numerical analysis that the fractal electrode with a nanostructured Pt/PEDOT:PSS coating outperforms the traditional PEDOT:PSS-coated circular electrode. This innovative combination of geometrical design and surface treatment introduces a novel approach to developing robust microelectrodes for reliable neural stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c08860 | DOI Listing |
Biol Cybern
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood.
View Article and Find Full Text PDFNat Commun
September 2025
Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
Interval timing, the ability to perceive and estimate durations between events, is essential for many animal behaviors. In mammals, it is linked to specific cortical and sub-cortical brain regions, but its neural basis in birds remains unclear. We trained two male carrion crows on a time estimation task using visual stimuli, cueing them to wait for a minimum duration of 1500 ms, 3000 ms, or 6000 ms before responding to receive a reward.
View Article and Find Full Text PDFNature
September 2025
Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2025
Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Bas
Recent investigations into the rapid antidepressant effects of ketamine, along with studies on schizophrenia-related susceptibility genes, have highlighted the GluN2A subunit as a critical regulator of both emotion and cognition. However, the specific impacts of acute pharmacological inhibition of GluN2A-containing NMDA receptors on brain microcircuits and the subsequent behavioral consequences remain poorly understood. In this study, we first examined the effects of MPX-004, a selective GluN2A NMDA receptor inhibitor, on behavior within the dorsomedial prefrontal cortex (dmPFC).
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2025
University of Toronto, Toronto, Ontario, Canada.
Neural oscillations in beta (13-30 Hz) and gamma (>30 Hz) frequency bands index a variety of sensorimotor and cognitive processes. To compare two rehabilitation regimens for chronic stroke patients with a hemiparetic hand, we randomly assigned them to either music-supported therapy or physiotherapy for 10 weeks. Previously, we reported the music group's improved motor speed, mood, well-being, and rhythm perception.
View Article and Find Full Text PDF