98%
921
2 minutes
20
Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood. In this study, we use a pair of unconnected two-compartment model neurons of the integrate-and-fire (IF) type to simulate the correlated spike trains driven by shared fluctuating dendritic inputs and exposed to weak alternating electric fields. Our results show that the output correlation increases with field intensity, but increases and then decreases with field frequency, displaying thus a frequency resonance. Through varying somatic and dendritic morphologies, we demonstrate that morphological differences between the soma and dendrites fundamentally shape the correlation-frequency resonance, with more pronounced differences yielding stronger resonance effects. Moreover, the anti-phase sinusoidal modulations induced by tACS at the soma and dendrite promote this correlation-frequency resonance, particularly when dendritic fluctuations exhibit a large mean value. We further examine the tACS effects on output correlation in biophysically and morphologically realistic pyramidal model neurons, revealing similar patterns to those observed in the two-compartment models. Our findings provide new insights into how tACS modulates the correlated spike trains and highlight the critical role of morphological differences between the soma and dendrites in determining the frequency-dependent output correlation. These predictions should be taken into consideration when understanding the tACS effects on population correlation and population coding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00422-025-01025-1 | DOI Listing |
Cell Commun Signal
September 2025
Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Universitätsstr. 150, Building MA 5/52, Bochum, 44801, Germany.
Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.
Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.
Br J Pharmacol
September 2025
Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.
View Article and Find Full Text PDFBiol Cybern
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood.
View Article and Find Full Text PDFNeotrop Entomol
September 2025
Dept of Entomology, Federal Univ of Viçosa, Viçosa, MG, Brazil.
The fruit fly Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is one of the main pests in apple orchards. Artificial neural networks (ANNs) are tools with good ability to predict phenomena such as the seasonal dynamics of pest populations. Thus, the objective of this work was to determine a prediction model for the seasonal dynamics of A.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA.
Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.
View Article and Find Full Text PDF