Caffeine mitigates ROS accumulation and attenuates motor neuron degeneration in the wobbler mouse model of amyotrophic lateral sclerosis.

Cell Commun Signal

Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Universitätsstr. 150, Building MA 5/52, Bochum, 44801, Germany.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

Results: Caffeine delayed motor performance decline, as observed in grip strength tests during the early symptomatic phase. Histological analyses revealed that significantly fewer motor neurons were lost in caffeine-treated mice at p41, despite no changes in soma morphology. Biochemical assays demonstrated that caffeine significantly reduced ROS levels and restored NAD levels to wildtype-like values, although NMNAT2 protein expression remained unaffected. The data suggest that caffeine mitigates oxidative stress through alternative pathways, potentially involving enhanced mitochondrial function and antioxidative defenses.

Conclusions: These findings highlight the potential of caffeine as a protective agent for delaying motor neuron degeneration in ALS. Future studies should explore optimal dosing strategies, combinatorial treatment approaches, and the underlying molecular mechanisms, to enable translation of these findings to human ALS patients.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12964-025-02415-5DOI Listing

Publication Analysis

Top Keywords

motor neuron
16
neuron degeneration
12
oxidative stress
12
caffeine mitigates
8
wobbler mouse
8
amyotrophic lateral
8
lateral sclerosis
8
caffeine
7
motor
6
mitigates ros
4

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

For neurons to establish the correct connections in animal nervous systems, interactions between cell adhesion molecules (CAMs), expressed presynaptically and postsynaptically, are thought to guide neurons to their targets. Here, we assess the role that affinity between two cognate CAMs-DIP-α and Dpr10-plays in establishing the leg neuromuscular system in If affinity decreases or, surprisingly, increases past certain thresholds, motor neuron (MN) terminal branches fail to be maintained. Live imaging during development shows that when affinities are aberrant, MN filopodia are unable to productively engage their muscle targets.

View Article and Find Full Text PDF

The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.

View Article and Find Full Text PDF

Modeling neurodegeneration and neuroinflammation in Parkinson's Disease: Animal-based strategies.

Methods Cell Biol

September 2025

Histology and Cell Biology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain. Electronic address:

Parkinson disease (PD) is the second most prevalent neurodegenerative disorder globally, trailing only Alzheimer´s disease. It currently affects nearly 3 % of individuals aged 65 and above. The disease is characterized by the progressive loss of dopaminergic neurons accompanied by a chronic neuroinflammatory process, which is responsible for both motor symptoms (tremor, rigidity, bradykinesia) and non-motor symptoms (depression, dysphagia, anxiety, constipation, and anosmia).

View Article and Find Full Text PDF

Precise measurement of motor neuron dysfunction in Drosophila ALS model via climbing assay and leg imaging.

Methods Cell Biol

September 2025

The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, P.R. China; Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, HA, P.R. China. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterized by progressive degeneration of motor neurons, leading to muscle weakness, paralysis, and death. While there is a plethora of studies focusing on many aspects of ALS, the pathogenesis of this disease is not well understood, and effective treatments are scarce. Drosophila melanogaster is a powerful model organism for studying ALS due to its genetic tractability and its evolutionarily conserved cellular and molecular processes which are also shared between the fly and human.

View Article and Find Full Text PDF