98%
921
2 minutes
20
Purpose: The study aimed to identify key genes related to lipid metabolism in chronic sinusitis and understand their biological implications, considering the growing interest in the association between chronic sinusitis - a complex inflammatory condition - and lipid metabolism due to lipids' role in inflammation and immunity.
Methods: Gene expression data from bulk - RNA sequence was analyzed and intersected with lipid metabolism genes and WGCNA module genes from the MSigDB database. Immune infiltration analysis was conducted. Machine learning techniques were used to develop a diagnostic model. qRT - PCR and immunofluorescence techniques were employed to confirm gene involvement. Potential targeted drugs were identified through relevant analyses.
Results: 41 hub genes were identified, which were involved in pathways like G protein - coupled receptor signaling, TGF - beta receptor signaling, and responses to oxidative stress and nitrogen compounds. Enrichment analyses suggested links to ubiquitin - mediated proteolysis, mTOR signaling, and MAPK signaling. A significant presence of immune cells was detected in the chronic sinusitis group. A combined RF+Stepglm model was developed, comprising six genes (KPNA3, RAB35, GLE1, RNF139, OSMR, and PDPK1), which demonstrated good diagnostic performance (AUC = 0.848). Potential targeted drugs such as Raloxifene and Hesperidin were identified. qRT - PCR and immunofluorescence confirmed that the expression levels of RAB35, GLE1, and OSMR were significantly higher in CRS samples compared to normal ones.
Conclusion: This research highlights the role of lipid metabolism in chronic sinusitis and provides a basis for the development of targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318519 | PMC |
http://dx.doi.org/10.2147/JIR.S536790 | DOI Listing |
Cell Death Differ
September 2025
Graduate Institute of Physiology, College of Biomedical Sciences, National Defense Medical University, Taipei, Taiwan, Republic of China.
Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial transcriptional factor that regulates fatty acid β-oxidation and ketogenesis in response to fasting. However, the mechanisms underlying PPARα function remain unclear. This study identified a novel PPARα-binding protein-RING finger protein 128 (RNF128)-that facilitates PPARα polyubiquitination, resulting in the degradation and suppression of PPARα function during fasting.
View Article and Find Full Text PDFNature
September 2025
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.
View Article and Find Full Text PDFOncogene
September 2025
Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China.
Heart Lung Circ
September 2025
Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.
View Article and Find Full Text PDFBiol Pharm Bull
September 2025
Department of Intensive Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China.
Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.
View Article and Find Full Text PDF