Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we have evaluated a targeted high-throughput massive parallel sequencing approach for detecting single nucleotide mutations or small genomic changes generated by new genomic techniques (NGT). We used unique molecular identifiers (UMIs) for the quantification of the mutant alleles and duplex sequencing to confirm a mutation on both strands to avoid polymerase chain reaction (PCR) artefacts or sequencing miss-calls. We tested the approach in blinded analyses on a set of mixed NGT-modified tomato lines and identified each single nucleotide mutation or small insert/deletion (InDel) down to a 0.1 % level. To our knowledge, this is the first performance evaluation of a duplex sequencing approach for detecting and quantifying small NGT DNA changes without a priori knowledge of the mutation type and position in a target region. Our study advances the scientific discussion on detecting NGT-induced DNA modifications in plants and food products, evaluating the potential and current limitations of a cutting-edge NGS-approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312065PMC
http://dx.doi.org/10.1016/j.fochms.2025.100278DOI Listing

Publication Analysis

Top Keywords

duplex sequencing
12
sequencing approach
12
approach detecting
8
single nucleotide
8
approach
4
approach high-sensitivity
4
high-sensitivity detection
4
detection genome-edited
4
genome-edited plants
4
plants paper
4

Similar Publications

DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging "hard drive" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications.

View Article and Find Full Text PDF

A Dual-Target Real-time PCR for proactive detection of Mpox variants.

J Virol Methods

September 2025

British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

In 2022, cases of Monkeypox virus (MPXV) in California contained a mutation in the TNF receptor gene (GR2G) that rendered the virus undetectable using a widely adopted public health diagnostic qPCR assay. This underscored the need for a dual-target PCR approach and prompted validation of a second target by the BCCDC Public Health Laboratory. In addition to the GR2G target validated in the original qPCR assay (and duplexed with the endogenous target human β-globin (HBG)), GP113 (OPG128) was identified and validated using both clinical samples and MPXV DNA controls.

View Article and Find Full Text PDF

Mismatch-sensitive DNA hybridization controlled by inchworm-type peptide nucleic acid-PEG conjugates.

Anal Biochem

September 2025

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori, 680-8552, Japan.

The duplex-forming behavior of an inchworm-type PNA-PEG conjugate (i-PPc), engineered for the selective recognition of point mutations in DNA, was assessed through thermodynamic analysis employing UV melting curves and circular dichroism spectroscopy. The i-PPc demonstrated the ability to form stable duplexes exclusively with fully complementary DNA sequences, while no hybridization with single-base mismatched sequences. This binary on/off hybridization behavior was maintained even under physiologically relevant conditions (37 °C), thereby illustrating the exceptional point mutation discrimination capability of i-PPc.

View Article and Find Full Text PDF

Target RNA recognition drives PIWI complex assembly for transposon silencing.

Mol Cell

September 2025

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address:

PIWI-clade Argonaute proteins and their associated PIWI-interacting RNAs (piRNAs) are essential guardians of genome integrity, silencing transposable elements through distinct nuclear and cytoplasmic pathways. Nuclear PIWI proteins direct heterochromatin formation at transposon loci, while cytoplasmic PIWIs cleave transposon transcripts to initiate piRNA amplification. Both processes rely on target RNA recognition by PIWI-piRNA complexes, yet how this leads to effector recruitment is unclear.

View Article and Find Full Text PDF

Unlabelled: Homologous recombination (HR) is a DNA double-strand break repair pathway that facilitates genetic exchange and protects damaged replication forks during DNA synthesis. As a template-based repair process, the successful repair of a double-strand break depends on locating suitable homology from a donor DNA sequence elsewhere in the genome. In eukaryotes, Rad51 catalyzes the homology search in coordination with the ATP-dependent motor protein Rad54.

View Article and Find Full Text PDF