Target RNA recognition drives PIWI complex assembly for transposon silencing.

Mol Cell

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PIWI-clade Argonaute proteins and their associated PIWI-interacting RNAs (piRNAs) are essential guardians of genome integrity, silencing transposable elements through distinct nuclear and cytoplasmic pathways. Nuclear PIWI proteins direct heterochromatin formation at transposon loci, while cytoplasmic PIWIs cleave transposon transcripts to initiate piRNA amplification. Both processes rely on target RNA recognition by PIWI-piRNA complexes, yet how this leads to effector recruitment is unclear. Here, we show that target engagement triggers formation of complexes, termed PIWI-comprising a PIWI protein, a piRNA-target duplex, a GTSF family protein, and Maelstrom-that serve as molecular platforms recruiting downstream effectors. In Drosophila, nuclear Piwi engages the SFiNX complex to establish heterochromatin, while cytoplasmic Aubergine complexes recruit the helicase Spindle-E to promote piRNA biogenesis. Evolutionary analysis reveals that PIWI formation is conserved across metazoans, uncovering an ancient mechanism coupling piRNA-guided target recognition to effector function. These findings define a unifying molecular principle for PIWI-mediated silencing across cellular compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2025.08.007DOI Listing

Publication Analysis

Top Keywords

target rna
8
rna recognition
8
nuclear piwi
8
piwi
5
target
4
recognition drives
4
drives piwi
4
piwi complex
4
complex assembly
4
assembly transposon
4

Similar Publications

Analyzing the toxicological effects of PET-MPs on male infertility: Insights from network toxicology, mendelian randomization, and transcriptomics.

Reprod Biol

September 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across

Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.

View Article and Find Full Text PDF

Mechanistic roles of long non-coding RNAs in DNA damage response and genome stability.

Mutat Res Rev Mutat Res

September 2025

Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.

View Article and Find Full Text PDF

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.

View Article and Find Full Text PDF

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for more effective and targeted therapeutic strategies. Traditional Chinese Medicine (TCM), known for its favorable safety profile and broad pharmacological effects, offers promising candidates for cancer treatment. Salvianolic acid F (SAF), a key bioactive compound derived from , has demonstrated antitumor potential, but its role and underlying mechanisms in lung cancer remain inadequately characterized.

View Article and Find Full Text PDF