Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent discoveries of superconductivity in Ruddlesden-Popper nickelates realize a rare category of superconductors. However, the use of high-pressure diamond anvil cells limits spectroscopic characterization of the density waves and superconducting gaps. Here, we systematically studied the pressure evolution of LaNiO using ultrafast optical pump-probe spectroscopy. We found that the transition temperature and energy gap of density waves are suppressed with increasing pressure and disappear suddenly near 17 GPa where structural transition appears. In addition, the observation of a single density wave gap indicates that the spin density wave and charge density wave remain coupled as pressure increases, rather than decoupling. After the density wave collapse, a distinct low-temperature regime emerges, characterized by a small gap consistent with potential superconducting pairing. The separated phase region of superconductivity and density waves suggests that superconductivity in pressurized-LaNiO competes strongly with density waves, offering new insights into the interplay between these two phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313999PMC
http://dx.doi.org/10.1038/s41467-025-62294-9DOI Listing

Publication Analysis

Top Keywords

density wave
20
density waves
16
superconductivity pressurized-lanio
8
density
8
wave
5
collapse density
4
wave emergence
4
superconductivity
4
emergence superconductivity
4
pressurized-lanio evidenced
4

Similar Publications

From a physics perspective, DNA and RNA molecules are characterized as dynamic biological structures that exhibit vibrations across a range of time scales. To conduct a more accurate investigation of their dynamic properties, it is essential to consider the environmental conditions surrounding these molecules. A harmonic Hamiltonian that incorporates damping, along with the Green's function method, has been utilized to analyze the vibrational responses of viscous DNA and RNA strands.

View Article and Find Full Text PDF

Interface Modes in Inspiralling Neutron Stars: A Gravitational-Wave Probe of First-Order Phase Transitions.

Phys Rev Lett

August 2025

Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA.

At the extreme densities in neutron stars, a phase transition to deconfined quark matter is anticipated. Yet masses, radii, and tidal deformabilities offer only indirect measures of a first-order phase transition, requiring many detections to resolve or being ineffective observables if the discontinuity exists at lower densities. We report on a smoking-gun gravitational-wave signature of a first-order transition: the resonant tidal excitation of an interface mode.

View Article and Find Full Text PDF

Quasi-one-dimensional magnets can host an ordered longitudinal spin-density wave state (LSDW) in magnetic field at low temperature, when longitudinal correlations are strengthened by Ising anisotropies. In the S=1/2 Heisenberg antiferromagnet YbAlO_{3} this happens via Ising-like interchain interactions. Here, we report the first experimental observation of magnetization plateaux at 1/5 and 1/3 of the saturation value via thermal transport and magnetostriction measurements in YbAlO_{3}.

View Article and Find Full Text PDF

In the gravitational-wave analysis of pulsar-timing-array datasets, parameter estimation is usually performed using Markov chain Monte Carlo methods to explore posterior probability densities. We introduce an alternative procedure that instead relies on stochastic gradient-descent Bayesian variational inference, whereby we obtain the weights of a neural-network-based approximation of the posterior by minimizing the Kullback-Leibler divergence of the approximation from the exact posterior. This technique is distinct from simulation-based inference with normalizing flows since we train the network for a single dataset, rather than the population of all possible datasets, and we require the computation of the data likelihood and its gradient.

View Article and Find Full Text PDF

We experimentally and numerically study the collapse dynamics of a quantum vortex in a two-dimensional atomic superfluid following a fast interaction ramp from repulsion to attraction. We find the conditions and timescales for a superfluid vortex to radially converge into a quasistationary density profile, demonstrating the spontaneous formation of a vortex solitonlike structure in an atomic Bose gas. We record an emergent self-similar dynamics caused by an azimuthal modulational instability, which amplifies initial density perturbations and leads to the eventual splitting of a solitonic ring profile or direct fragmentation of a superfluid into disordered, but roughly circular arrays of Townes solitonlike wave packets.

View Article and Find Full Text PDF