98%
921
2 minutes
20
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), high responsivity (up to 1015 mA/W at 250 nm and 2.5 V bias), and thermal stability up to 100 °C. The synthesis process involved CO laser exfoliation of hexagonal boron nitride, followed by gold NP deposition via RF sputtering and thermal annealing. Structural and compositional analyses confirmed the formation of a three-dimensional network of atomically thin BN nanosheets decorated with uniformly distributed gold nanoparticles. This architecture facilitates plasmon-enhanced absorption and efficient charge separation via heterojunction interfaces, significantly boosting photocurrent generation across the deep ultraviolet (DUV), visible, near-infrared (NIR), and mid-infrared (MIR) spectral regions. First-principles calculations support the observed broadband response, confirming bandgap narrowing induced by defects in h-BN and functionalization by gold nanoparticles. The device's self-driven operation, wide spectral response, and durability under elevated temperatures underscore its strong potential for next-generation broadband, self-powered, and wearable sensing and optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299444 | PMC |
http://dx.doi.org/10.3390/molecules30142897 | DOI Listing |
ACS Nano
September 2025
School of Microelectronics, Hefei University of Technology, Hefei 230009, China.
Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea.
Bifunctional integration of indoor organic photovoltaics (OPVs) and photodetectors (OPDs) faces fundamental challenges because of incompatible interfacial thermodynamics: indoor OPVs require unimpeded charge extraction under low-light conditions (200-1000 lx), whereas OPDs require stringent suppression of noise current. Conventional hole transport layers (HTLs) fail to satisfy these opposing charge-dynamic requirements concurrently with commercial practicality (large-area uniformity, photostability, and cost-effective manufacturability). This study introduces benzene-phosphonic acid (BPA)-a minimalist self-assembled monolayer (SAM)-based HTL with a benzene core and phosphonic acid anchoring group-enabling cost-effective synthesis and excellent ITO interfacial properties such as energy alignment, uniform monolayer, and stability.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, 030006, Taiyuan, China.
The fast crystallization and facile oxidation of Sn of tin-lead (Sn-Pb) perovskites are the biggest challenges for their applications in high-performance near-infrared (NIR) photodetectors and imagers. Here, we introduce a multifunctional diphenyl sulfoxide (DPSO) molecule into perovskite precursor ink to response these issues by revealing its strong binding interactions with the precursor species. The regulated perovskite film exhibits a dense morphology, reduced defect density and prolonged carrier diffusion length.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Lateral homojunction photodetectors (PDs) offer high responsivity and fast response, yet challenges in tailoring carrier concentrations in two-dimensional transition-metal dichalcogenides (TMDs) have limited their implementation. Here, we demonstrate a high-performance self-powered monolithic lateral p-i-n homojunction PD using multilayer WS. To our knowledge, this study is the first report of achieving tunable, multilevel compensation doping via WO formation using only time-controlled and region-selective ultraviolet (UV)/ozone oxidation.
View Article and Find Full Text PDFNat Commun
September 2025
State Ley Laboratory of Integrated Optoelectronics, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, School of Physics, Northeast Normal University, Changchun, China.
Single-pixel imaging is emerging as a promising alternative to traditional focal plane array technologies, offering advantages in compactness and cost-effectiveness. However, the lack of solar-blind photodetectors combining fast-response and high-sensitivity has constrained their application in the deep ultraviolet spectrum. This work introduces a self-powered solar-blind photodetector based on a heterostructure comprising a GaO photosensitive layer, an AlN barrier layer, and an N-polar AlGaN:Si contact layer.
View Article and Find Full Text PDF