98%
921
2 minutes
20
To address the challenges of extracting rolling bearing degradation information and the insufficient performance of conventional convolutional networks, this paper proposes a rolling bearing degradation state identification method based on the improved monopulse feature extraction and a one-dimensional dilated residual convolutional neural network (1D-DRCNN). First, the fault pulse envelope waveform features are extracted through phase scanning and synchronous averaging, and a two-stage grid search strategy is employed to achieve FCC calibration. Subsequently, a 1D-DRCNN model is constructed to identify rolling bearing degradation states under different working conditions. The experimental study collects the vibration signals of nine degradation states, including the different sizes of inner and outer ring local faults as well as normal conditions, to comparatively analyze the proposed method's rapid calibration capability and feature extraction quality. Furthermore, t-SNE visualization is utilized to analyze the network response to bearing degradation features. Finally, the degradation state identification performance across different network architectures is compared in pattern recognition experiments. The results show that the proposed improved feature extraction method significantly reduces the iterative calibration computational burden while effectively extracting local fault degradation information and overcoming complex working condition influence. The established 1D-DRCNN model integrates the advantages of dilated convolution and residual connections and can deeply mine sensitive features and accurately identify different bearing degradation states. The overall recognition accuracy can reach 97.33%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298390 | PMC |
http://dx.doi.org/10.3390/s25144299 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.
Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institute of Orthopedic Surgery, Xijing Hospital, Air force Medical University;
Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.
View Article and Find Full Text PDFACS Nano
September 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
Although traditional immunogenic cell death (ICD) inducers generate vaccines (ISV) to potentiate antiprogrammed cell death ligand 1 (anti-PDL1) antibodies therapy, their efficacy remains limited. This limitation may be attributed to the physical barrier created by extracellular matrix (ECM) and immunosuppressive metabolic barrier mediated by adenosine. Here, we report an oncolytic polymer (OP), a well-designed ε-polylysine derivative with ICD-inducing capacity, which can simultaneously facilitate the release of endogenous ECM-degrading enzyme, Cathepsin B.
View Article and Find Full Text PDFACS Omega
September 2025
Nanohybrids and Innovation Coating Research Group (NHIC), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathumthani 12120, Thailand.
Using leaf fibers from pineapple (PALFs) as a model dual-purpose plant, we deliberately explore the effect of bio- and semibiobased treatment using xylanase, cellulase, and a mixture of pectinase and amylase. We assess these treatments for their potential to selectively and precisely remove lignocellulosic components. Additionally, we examine how they modify the relative content of cellulose, hemicellulose, and lignin, as these are key factors affecting the physical appearance, dimensional structures, and mechanical integrity.
View Article and Find Full Text PDFFront Immunol
September 2025
Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China.
Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.
View Article and Find Full Text PDF