98%
921
2 minutes
20
In composites, fiber-matrix thermal mismatch induces stress heterogeneity that is beyond the resolution of macroscopic approaches. The asymptotic expansion homogenization method is used to create a multi-scale thermo-mechanical coupling model that predicts the elastic modulus, thermal expansion coefficients, and thermal conductivity of ceramic matrix composites at both the macro- and micro-scales. These predictions are verified to be accurate with a maximum relative error of 9.7% between the measured and predicted values. The multi-scale analysis method is then used to guide the vane's thermal stress analysis, and a macro-meso-micro multi-scale model is created. The thermal stress distribution and stress magnitudes of the guide vane under a transient high-temperature load are investigated. The results indicate that the temperature and thermal stress distributions of the guide vane under the homogenization and lamination theory models are rather comparable, and the locations of the maximum thermal stress are predicted to be reasonably close to one another. The homogenization model allows for the rapid and accurate prediction of the guide vane's thermal stress distribution. When compared to the macro-scale stress values, the meso-scale predicted stress levels exhibit excellent accuracy, with an inaccuracy of 11.7%. Micro-scale studies reveal significant stress concentrations at the fiber-matrix interface, which is essential for the macro-scale fatigue and fracture behavior of the guide vane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299064 | PMC |
http://dx.doi.org/10.3390/ma18143348 | DOI Listing |
J Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Background: Phrenic nerve injury during mediastinal tumor resection can lead to significant postoperative diaphragmatic dysfunction. Current intraoperative protection techniques are imprecise and lack real-time feedback. We aimed to develop and validate a quantifiable, multimodal neuroprotective strategy.
View Article and Find Full Text PDFMater Horiz
September 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Advanced Polymer Materials, Chengdu, 610065, Sichuan, China.
Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared.
View Article and Find Full Text PDFVet World
July 2025
Department of Animal Husbandry, Ruminant Animals and Animal Products Technologies, Faculty of Agriculture, Trakia University, 6000, Bulgaria.
Background And Aim: Rising global temperatures and increasing humidity levels are intensifying the risk of heat stress (HS) in high-yielding dairy cattle. The temperature-humidity index (THI) is a standard metric for evaluating thermal stress in livestock. This study aimed to assess seasonal and diurnal variations in temperature, relative humidity, and THI within a milking parlor and determine their compliance with established thermal comfort thresholds for dairy cows.
View Article and Find Full Text PDFVet World
July 2025
Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.
View Article and Find Full Text PDF