Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Ischemic heart disease remains a leading cause of morbidity and mortality worldwide, with myocardial ischemia-reperfusion (I/R) injury significantly contributing to cardiomyocyte death and poor outcomes post-acute myocardial infarction (AMI). Emerging evidence highlights metabolic changes during myocardial injury, particularly in purine metabolism. This study investigates the protective role of xanthosine (XTS), a purine metabolism intermediate, in alleviating I/R injury.

Methods: Neonatal and adult mouse myocardial tissues post-myocardial infarction (MI) were analyzed using untargeted and targeted metabolomics to explore metabolic profiles. The effects of XTS on I/R injury were evaluated in vivo using a murine I/R model and in vitro with hypoxia/reoxygenation-treated neonatal rat cardiomyocytes (NRCMs). Cardiac function, fibrosis, apoptosis, oxidative stress markers, and ferroptosis-related pathways were assessed via echocardiography, biochemical assays, western blotting, and electron microscopy. Integrated drug affinity responsive target stability (DARTS)-based drug target screening and RNA-seq transcriptomic profiling elucidate XTS-mediated mechanisms against I/R injury.

Results: Metabolomics revealed distinct differences in purine metabolism between neonatal and adult mice post-MI, with significant XTS accumulation observed in neonatal hearts. In vivo, XTS treatment in adult mice enhanced left ventricular function, reduced fibrosis, and alleviated lipid peroxidation and mitochondrial damage post-I/R injury. In vitro, XTS significantly improved cardiomyocyte viability, reduced oxidative stress, and mitigated ferroptosis by restoring glutathione peroxidase 4 (GPX4) levels and reducing acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Mechanistically, XTS stabilized metabolic enzymes, upregulated L-arginine and glutathione (GSH) to mitigate reactive oxygen species(ROS), and inhibited ferroptosis.

Conclusions: XTS, a key purine metabolism intermediate, improves cardiac remodeling and function following I/R injury by suppressing ferroptosis and reducing mitochondrial ROS production. These findings provide novel insights into the therapeutic potential of XTS as an adjunctive treatment for patients with AMI undergoing revascularization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306105PMC
http://dx.doi.org/10.1186/s11658-025-00766-yDOI Listing

Publication Analysis

Top Keywords

purine metabolism
16
i/r injury
12
myocardial ischemia-reperfusion
8
xts
8
metabolism intermediate
8
neonatal adult
8
oxidative stress
8
adult mice
8
injury
6
i/r
6

Similar Publications

Adenylosuccinate lyase deficiency (ADSLd) is a rare autosomal recessive purine metabolism disorder with several clinical manifestations. While toxic substrate accumulation is a known hallmark, no additional molecular mechanisms have been established. Here, we show that ADSLd is associated with mitochondrial dysfunction, including increased fragmentation, impaired respiration, and reduced ATP production.

View Article and Find Full Text PDF

Cardiac fibrosis, especially in the infarct border zone, leads to decreased cardiac compliance, impaired systolic and diastolic function, resulting in heart failure. M6A methylation plays a role in fibrosis development. However, its underlying mechanism remains poorly understood.

View Article and Find Full Text PDF

Background: Obesity has emerged as a critical global public health challenge. Postmenopausal women experience significantly elevated risks of metabolic disorders and a marked increase in obesity prevalence due to declining estrogen levels. The uric acid to high-density lipoprotein cholesterol ratio (UHR), an emerging biomarker for metabolic syndrome, is gaining clinical recognition.

View Article and Find Full Text PDF

The rising prevalence of hyperuricemia and associated complications present a substantial global health challenge. Fucoidan, a natural sulfate-rich polysaccharide degraded by gut microbiota, is under investigation as a potential therapeutic agent for reducing uric acid levels. However, the precise mechanism underlying its effects remains unclear.

View Article and Find Full Text PDF

Impact of In vitro Gastrointestinal Digestion on the Chemical Composition and Prebiotic Potential of Coffee Silverskin.

Plant Foods Hum Nutr

September 2025

REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.

The growing interest in prebiotic ingredients has led to the valorization of agri-food by-products, such as coffee silverskin, known for its richness in dietary fiber and health-promoting compounds. This study evaluated the impact of in vitro simulation of gastrointestinal digestion on the chemical composition (carbohydrates, caffeine, and chlorogenic acids) and prebiotic potential (probiotic growth, organic acid production, pH, and antioxidant activity) of milled coffee silverskin. The results show stability of polysaccharides during digestion, while caffeine and 5-caffeoylquinic acid were partially released into the bioaccessible fraction.

View Article and Find Full Text PDF