Adenylosuccinate lyase deficiency (ADSLd) is a rare autosomal recessive purine metabolism disorder with several clinical manifestations. While toxic substrate accumulation is a known hallmark, no additional molecular mechanisms have been established. Here, we show that ADSLd is associated with mitochondrial dysfunction, including increased fragmentation, impaired respiration, and reduced ATP production.
View Article and Find Full Text PDFThe receptor interacting protein kinase 3 (RIPK3) is the main player in the activation of necroptosis, a pro-inflammatory regulated cell death modality induced by many different stimuli. RIPK3 is epigenetically regulated by DNA methylation and can be expressed when its promoter is associated with H3K4me3 histone. In this study, we show that Transglutaminase 2 protein (TG2) is necessary to induce necroptosis pathway allowing the expression of Ripk3 gene.
View Article and Find Full Text PDFAging syndromes are rare genetic disorders sharing the features of accelerated senescence. Among these, Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy (MDPL; OMIM #615381) is a rare autosomal dominant disease due to a in-frame deletion in gene, encoding the catalytic subunit of DNA polymerase delta. Here, we investigated how MSCs may contribute to the phenotypes and progression of premature aging syndromes such as MDPL.
View Article and Find Full Text PDFCell Death Discov
January 2024
Riboflavin Transporter Deficiency (RTD) is a rare genetic, childhood-onset disease. This pathology has a relevant neurological involvement, being characterized by motor symptoms, ponto-bulbar paralysis and sensorineural deafness. Such clinical presentation is associated with muscle weakness and motor neuron (MN) degeneration, so that RTD is considered part of the MN disease spectrum.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
November 2023
The relationships between motor neurons and the skeletal muscle during development and in pathologic contexts are addressed in this Chapter.We discuss the developmental interplay of muscle and nervous tissue, through neurotrophins and the activation of differentiation and survival pathways. After a brief overview on muscular regulatory factors, we focus on the contribution of muscle to early and late neurodevelopment.
View Article and Find Full Text PDFRiboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either or genes, resulting in insufficient supply of riboflavin (vitamin B2) and consequent impairment of flavoprotein-dependent metabolic pathways. Current therapy, empirically based high-dose riboflavin supplementation, ameliorates the progression of the disease, even though response to treatment is variable and partial.
View Article and Find Full Text PDFMandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy is a rare, genetic, premature aging disease named MDPL Syndrome, due to almost always a variant in gene, encoding the DNA polymerase δ. In previous studies, we have already described several hallmarks of aging, including genetic damage, telomere shortening, cell senescence and proliferation defects. Since a clear connection has been reported between telomere shortening and mitochondria malfunction to initiate the aging process, we explored the role that mitochondrial metabolism and activity play in pathogenesis of MDPL Syndrome, an aspect that has not been addressed yet.
View Article and Find Full Text PDFThe cytoskeletal network plays a crucial role in differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient- specific induced Pluripotent Stem Cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance.
View Article and Find Full Text PDFRiboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by sensorineural deafness and motor neuron degeneration. Since riboflavin plays key functions in biological oxidation-reduction reactions, energy metabolism pathways involving flavoproteins are affected in RTD. We recently generated induced pluripotent stem cell (iPSC) lines from affected individuals as an in vitro model of the disease and documented mitochondrial impairment in these cells, dramatically impacting cell redox status.
View Article and Find Full Text PDFMitochondrial dysfunction is a key element in the pathogenesis of neurodegenerative disorders, such as riboflavin transporter deficiency (RTD). This is a rare, childhood-onset disease characterized by motoneuron degeneration and caused by mutations in and , encoding riboflavin (RF) transporters (RFVT2 and RFVT3, respectively), resulting in muscle weakness, ponto-bulbar paralysis and sensorineural deafness. Based on previous findings, which document the contribution of oxidative stress in RTD pathogenesis, we tested possible beneficial effects of several antioxidants (Vitamin C, Idebenone, Coenzyme Q and EPI-743, either alone or in combination with RF) on the morphology and function of neurons derived from induced pluripotent stem cells (iPSCs) from two RTD patients.
View Article and Find Full Text PDFRiboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by progressive pontobulbar palsy, sensory and motor neuron degeneration, sensorineural hearing loss, and optic atrophy. As riboflavin (RF) is the precursor of FAD and FMN, we hypothesize that both mitochondrial and peroxisomal energy metabolism pathways involving flavoproteins could be directly affected in RTD, thus impacting cellular redox status. In the present work, we used induced pluripotent stem cells (iPSCs) from RTD patients to investigate morphofunctional features, focusing on mitochondrial and peroxisomal compartments.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) hold great promise for developing personalized regenerative medicine, however characterization of their biological features is still incomplete. Moreover, changes occurring in long-term cultured iPSCs have been reported, suggesting these as a model of cellular aging. For this reason, we addressed the ultrastructural characterization of iPSCs, with a focus on possible time-dependent changes, involving specific cell compartments.
View Article and Find Full Text PDF