98%
921
2 minutes
20
Brain injury following cardiac arrest (CA) is a significant cause of mortality and poor prognosis in patients, and effective treatment strategies remain limited. Stem cell-derived extracellular vesicles (EVs), a novel cell-free therapeutic approach, have recently demonstrated significant potential in the field of brain injury repair. EVs, key mediators of stem cell paracrine and autocrine signaling, are enriched with bioactive molecules such as non-coding RNAs and proteins. These EVs have the capacity to traverse the bloodstream, reach injury sites, and modulate various biological processes, including neuronal survival, oxidative stress, inflammatory responses, blood-brain barrier integrity, and neurovascular regeneration.This review aims to provide a comprehensive overview of the research history, structural characteristics, and in vivo distribution and metabolism of stem cell-derived EVs. The review further explores their therapeutic potential and underlying mechanisms in post-CA brain injury, including the inhibition of neuronal apoptosis, alleviation of oxidative stress and inflammation, promotion of blood-brain barrier repair, and enhancement of neurovascular regeneration. Additionally, the review highlights emerging directions and challenges in the clinical application of stem cell-derived EVs, offering theoretical insights and perspectives for future research and translational development. The potential of stem cell-derived EVs as a breakthrough strategy for treating post-CA brain injury is underscored, offering renewed optimism for enhancing patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297810 | PMC |
http://dx.doi.org/10.1186/s13578-025-01451-5 | DOI Listing |
Injury
August 2025
Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:
Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.
View Article and Find Full Text PDFLife Sci Alliance
November 2025
Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
Enterovirus D68 (EV-D68) is an emerging respiratory virus associated with extra-respiratory complications, especially acute flaccid myelitis. However, the pathogenesis of acute flaccid myelitis is not fully understood. It is hypothesised that through infection of skeletal muscles, the virus further infects motor neurons via the neuromuscular junction.
View Article and Find Full Text PDFBrain Behav Immun
September 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland. Electronic address:
Microglia, brain-resident immune cells, are involved in pathophysiology of several neurodegenerative diseases, including Parkinson's disease. Given significant species-specific differences in microglia gene expression, particularly in disease-risk genes, as well as the highly reactive nature of these cells, studying human microglia in a whole brain environment is essential. Here, we established a humanized mouse model by transplanting human induced pluripotent stem cell-derived hematopoietic progenitor cells into the striatum of immunodeficient adult mice and injected human alpha-synuclein preformed fibrils to model Parkinson's disease pathology.
View Article and Find Full Text PDFCell Stem Cell
September 2025
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:
Fat depots across the body dynamically tune their sizes in response to nutrient demands and nonmetabolic cues. Writing in Cell Stem Cell, Rivera-Gonzalez et al. report that skin fat, notable for its ability to rapidly expand, harbors molecularly distinct precursors, primed for proliferation and differentiation into mature adipocytes.
View Article and Find Full Text PDFClin Transl Med
September 2025
Department of Cardiology, Guangzhou Red Cross Hospital of Ji-Nan University, Guangzhou, China.
Background: To investigate the role of self-peripheral blood mesenchymal stem cell (PBMSC)-derived exosomes (Exos) in enhancing renal sympathetic denervation (RD)-mediated heart regeneration following myocardial infarction (MI) in a porcine model.
Methods: Pigs (ejection fraction [EF] < 40% post-MI) were randomised to early sham RD or RD. At 2 weeks post-MI, autologous PBMSC-Exos were collected.