98%
921
2 minutes
20
Hypertrophic scar is a fibrous hyperplastic disorder that arises from skin injuries. The current therapeutic modalities are constrained by the dense and rigid scar tissue which impedes effective drug delivery. Additionally, insufficient autophagic activity in fibroblasts hinders their apoptosis, leading to excessive matrix deposition. Here, we developed an active microneedle (MN) system to overcome these challenges by integrating micromotor-driven drug delivery with autophagy regulation to remodel the scar microenvironment. Specifically, sodium bicarbonate and citric acid were introduced into the MNs as a built-in engine to generate CO bubbles, thereby enabling enhanced lateral and vertical drug diffusion into dense scar tissue. The system concurrently encapsulated curcumin (Cur), an autophagy activator, and triamcinolone acetonide (TA), synergistically inducing fibroblast apoptosis by upregulating autophagic activity. studies demonstrated that active MNs achieved efficient drug penetration within isolated scar tissue. The rabbit hypertrophic scar model revealed that TA-Cur MNs significantly reduced the scar elevation index, suppressed collagen I and transforming growth factor-1 (TGF-1) expression, and elevated LC3 protein levels. These findings highlight the potential of the active MN system as an efficacious platform for autonomous augmented drug delivery and autophagy-targeted therapy in fibrotic disorder treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278434 | PMC |
http://dx.doi.org/10.1016/j.apsb.2025.05.017 | DOI Listing |
Nanomedicine (Lond)
September 2025
Department of Anesthesiology & Critical Care Medicine, The George Washington University, Washington, DC, USA.
BMC Biotechnol
September 2025
Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Fundam Clin Pharmacol
October 2025
Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.
View Article and Find Full Text PDFPharm Res
September 2025
Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
Objective: A fundamental understanding of drug diffusion and binding processes is critical for the design and optimization of a wide variety of drug delivery devices. Most of the past literature assume binding to occur uniformly throughout the tissue, or, at best, in specific layers of a multilayer tissue. However, in many realistic scenarios, such as in cancer-targeting drugs, drug binding occurs in discrete irregularly shaped regions.
View Article and Find Full Text PDFNat Rev Urol
September 2025
Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
Low-grade non-muscle invasive bladder cancer is a specific category of bladder cancer with a favourable prognosis; however, its management presents several challenges. The risk of stage progression is very low, but approximately half of patients will experience recurrence within the first 5 years after diagnosis. This high propensity for recurrence, coupled with the threat of progression, mandates ongoing surveillance.
View Article and Find Full Text PDF