Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Resistance to chemotherapy remains a major clinical challenge in triple-negative breast cancer (TNBC), an intrinsic subtype with limited available therapeutic options. The expression of moesin (MSN) is upregulated in TNBC patients, but little is known about the role of MSN in breast carcinogenesis.

Methods: We investigated the MSN-dependent autocrine loop between extracellular interleukin 6 (IL-6) and NF-κB, along with a signaling cascade involving GTPase-mediated STAT3 phosphorylation. Various in vitro and in vivo assays were used to evaluate tumor initiation, growth, and stemness properties in TNBC models.

Results: High MSN expression was correlated with shorter overall and disease-free survival in TNBC patients. In vivo, MSN promotes tumor initiation and growth. Mechanistically, MSN-mediated IL-6/NF-κB autoregulatory feedback enhances IL-6 transcription. IL-6 binding to LPAR1 activated MSN phosphorylation, which then sequentially phosphorylated the CDC42-PAK4 complex, triggering nuclear translocation of the pSTAT3-MSN complex. This led to pSTAT3-mediated activation of cancer stemness genes (IGFN1, EML1, and SRGN), contributing to Adriamycin resistance. Notably, combination treatment with the FDA-approved STAT3 inhibitor Atovaquone and Adriamycin restored drug sensitivity.

Conclusions: Our findings uncover the critical role of MSN in regulating STAT3-mediated cancer stemness via the IL-6/NF-κB signaling axis. These results provide a strong rationale for repositioning STAT3 inhibitors such as Atovaquone as a therapeutic strategy in Adriamycin-resistant TNBC patients exhibiting pSTAT3-MSN complex upregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281688PMC
http://dx.doi.org/10.1186/s13058-025-02072-zDOI Listing

Publication Analysis

Top Keywords

cancer stemness
12
tnbc patients
12
triple-negative breast
8
breast cancer
8
role msn
8
tumor initiation
8
initiation growth
8
pstat3-msn complex
8
msn
6
cancer
5

Similar Publications

Cancer stem cells in focus: Deciphering the dynamic functional landscape of stemness in cancer.

Biochim Biophys Acta Rev Cancer

September 2025

Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom. Electronic address:

Cancer stem cells (CSCs) are central to tumour initiation, progression, and relapse, yet their dynamic and adaptive nature hampers therapeutic targeting. Once viewed as a fixed subpopulation, CSCs are now recognised as a fluid functional state that tumour cells can enter or exit, driven by intrinsic programs, epigenetic reprogramming, and microenvironmental cues. This plasticity complicates identification due to inconsistent marker expression and enables resistance, dormancy, and metastasis.

View Article and Find Full Text PDF

Obesity is strongly associated with triple-negative breast cancer (TNBC). A better understanding of the molecular mechanisms driving obesity-induced TNBC progression could facilitate development of precision dietary intervention strategies. Here, we used murine models of obesity induced by different high-fat diets (HFDs) to examine their impact on TNBC progression.

View Article and Find Full Text PDF

Liver hepatocellular carcinoma (LIHC) is a prevalent and highly aggressive form of liver cancer, characterized by increasing rates of incidence and mortality globally. Although numerous treatment options currently exist, they frequently result in insufficient clinical outcomes for those diagnosed with LIHC. This highlights the urgent need to identify new biomarkers that can enhance prognostic evaluations and support the development of more effective therapeutic strategies for LIHC.

View Article and Find Full Text PDF

Metabolic reprogramming promotes cancer aggressiveness and an immune-suppressive tumor microenvironment. Loss of the Y chromosome (LOY) drives both phenotypes in bladder cancer (BC). We investigated the hypothesis that LOY leads to metabolic reprogramming using untargeted metabolomic profiling of human BC cells and analysis of pan-cancer transcriptomic datasets.

View Article and Find Full Text PDF

Purpose: Hepatocellular carcinoma (HCC) recurrence remains a significant burden on global healthcare. Hepatic ischemia-reperfusion injury (HIRI) is a common complication in liver surgery and may be a contributing factor to HCC recurrence. Nevertheless, the potential mechanism underlying HIRI-induced HCC recurrence has not been fully elucidated.

View Article and Find Full Text PDF