Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The heart-brain axis hypothesis suggests a bidirectional connection between the brain and the heart with relevant implications in health and disease. Cardiovascular diseases have been empirically linked to an increased risk of neurological diseases. However, it remains unclear to what extent different cardiovascular diseases affect brain health quantitatively across subjects and if that is associated with the extent the heart is affected by a disease. Therefore, this study aims to explore how cardiovascular diseases affect biological ageing of the brain and heart by quantifying the brain age gap (BAG) and the heart age gap (HAG) and relating the two to each other.

Methods: This study used data from UK Biobank participants with available T1-weighted brain magnetic resonance imaging (MRI) scans, cardiac MRI-derived features, as well as pulse wave analysis cardiac measurements. This dataset included 7,500 healthy females and 6,684 healthy males. The data from healthy subjects was used to train biological brain age prediction machine learning models. For BAG computation, a convolutional neural network was trained based on the MRI data, while a CatBoost model was trained for HAG analyses based on the tabulated cardiac features. Individuals with cardiovascular diseases (F = 2,304, M = 2,925) in the UK Biobank were categorized using Phecodes and split based on sex and used to calculate the HAG and BAG for further analyses.

Results: In 36 sex-specific cardiovascular disease groups, 24 showed significant differences from healthy subjects in the BAG and HAG distributions, whereas no strong correlations between the BAG and HAG distributions within disease groups were found. However, some diseases, such as hypotension and cardiac conduction disorders, showed sex-specific differences.

Discussion: This study demonstrates that the combined use of HAG and BAG biomarkers provides a more comprehensive understanding of the interplay between cardiovascular and neurological ageing. The significant differences observed in disease groups, while lacking a strong correlation between the BAG and HAG, questions the generalizability of the heart-brain axis theory with respect to age gap biomarkers, suggesting potentially heterogeneous aging processes of the two systems that warrant further investigation in future work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278062PMC
http://dx.doi.org/10.3389/fcvm.2025.1569423DOI Listing

Publication Analysis

Top Keywords

cardiovascular diseases
20
age gap
12
disease groups
12
bag hag
12
heart-brain axis
8
brain heart
8
diseases affect
8
brain age
8
healthy subjects
8
hag bag
8

Similar Publications

Perinatal stroke is a vascular injury occurring early in life, often resulting in motor deficits (hemiplegic cerebral palsy/HCP). Comorbidities may also include poor neuropsychological outcomes, such as deficits in memory. Previous studies have used resting state functional MRI (fMRI) to demonstrate that functional connectivity (FC) within hippocampal circuits is associated with memory function in typically developing controls (TDC) and in adults after stroke, but this is unexplored in perinatal stroke.

View Article and Find Full Text PDF

Objectives: The Charlson comorbidity index reflects overall comorbidity burden and has been applied in cardiovascular medicine. However, its role in predicting in-hospital mortality in patients with acute myocardial infarction (AMI) complicated by ventricular arrhythmias (VA) remains unclear. This study aims to evaluate the predictive value of the Charlson comorbidity index in this setting and to construct a nomogram model for early risk identification and individualized management to improve outcomes.

View Article and Find Full Text PDF

Objectives: Patients with connective tissue diseases (CTD) have a high incidence of cardiac involvement, which often presents insidiously and can progress rapidly, making it one of the leading causes of death. Multiparametric cardiovascular magnetic resonance (CMR) provides a comprehensive quantitative evaluation of myocardial injury and is emerging as a valuable tool for detecting cardiac involvement in CTD. This study aims to investigate the correlations between CMR features and serological biomarkers in CTD patients, assess their potential clinical value, and further explore the impact of pre-CMR immunotherapy intensity on CMR-specific parameters, thereby evaluating the role of CMR in the early diagnosis of CTD-related cardiac involvement.

View Article and Find Full Text PDF

Association between remnant cholesterol and atherosclerosis plaques in single and multiple vascular territories.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: In recent years, the role of remnant cholesterol (RC) in the development and progression of cardiovascular diseases has gained increasing attention. However, evidence on the association between RC and subclinical atherosclerosis is limited. This study aims to examine the relationship between RC and atherosclerotic plaques in single and multiple vascular territories.

View Article and Find Full Text PDF

Mendelian randomization studies on cardiometabolic factors and intracranial aneurysms: A systematic literature analysis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China.

Objectives: Intracranial aneurysm (IA) has an insidious onset, and once ruptured, it carries high rates of mortality and disability. Cardiometabolic factors may be associated with the formation and rupture of IA. This study aims to summarize the application of Mendelian randomization (MR) methods in research on cardiometabolic factors and IA, providing insights for further elucidation of IA etiology and pathogenesis.

View Article and Find Full Text PDF