98%
921
2 minutes
20
Robot-assisted surgery (RAS) is transforming modern healthcare by enhancing precision, reducing human error, and improving patient outcomes. A crucial step toward fully autonomous robotic surgery is the accurate and real-time recognition of surgical instruments. In this work, we present a comprehensive surgical instrument dataset named as SID-RAS which comprises of 6000 high resolution images categorized into nine distinct classes: cotton, episiotomy scissors, forceps, gloves, hemostats, mayo, scalpel, stitch scissors, and syringe. To ensure dataset's diversity and simulate real world surgical scenarios, multiple augmentations were applied, including motion blur, varying lighting conditions (low light and high brightness), simulated blood stains, and 360-degree rotation. The dataset was evaluated using YOLOv10 (nano, small, medium) and YOLOv11 (nano, small, medium) object detection models, aiming to assess their effectiveness in recognizing and localizing surgical instruments in real-time. On an average, the models have attained 99.3% of mean Average Precision (mAP) and 99.2% F1-score, demonstrating the quality of SID-RAS dataset for surgical tool detection. These findings contribute to the preliminary development of AI-driven robotic surgical assistance systems, which can be extended to various types of surgeries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269440 | PMC |
http://dx.doi.org/10.1016/j.dib.2025.111798 | DOI Listing |
Med Image Anal
August 2025
The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region of China. Electronic address:
Recently, Multimodal Large Language Models (MLLMs) have demonstrated their immense potential in computer-aided diagnosis and decision-making. In the context of robotic-assisted surgery, MLLMs can serve as effective tools for surgical training and guidance. However, there is still a deficiency of MLLMs specialized for surgical scene understanding in endoscopic procedures.
View Article and Find Full Text PDFClin Anat
September 2025
Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea.
Plantar melanomas present unique diagnostic and surgical challenges owing to substantial regional variations in skin thickness. Although the Breslow thickness remains the primary criterion for staging and surgical excision, its application on plantar melanoma is complicated by the inherent thickness of the glabrous plantar epidermis, which may lead to tumor depth overestimation. Accurate assessment of plantar skin thickness is essential for optimizing staging accuracy and refining surgical margins.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2025
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
Surgical instrument segmentation plays an important role in robotic autonomous surgical navigation systems as it can accurately locate surgical instruments and estimate their posture, which helps surgeons understand the position and orientation of the instruments. However, there are still some problems affecting segmentation accuracy, like insufficient attention to the edges and center of surgical instruments, insufficient usage of low-level feature details, etc. To address these issues, a lightweight network for surgical instrument segmentation in gastrointestinal (GI) endoscopy (GESur_Net) is proposed.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pathology, Hospital Tuanku Fauziah, Jalan Tun Abdul Razak, Kangar, Perlis, Malaysia.
Cervical cancer remains a significant cause of female mortality worldwide, primarily due to abnormal cell growth in the cervix. This study proposes an automated classification method to enhance detection accuracy and efficiency, addressing contrast and noise issues in traditional diagnostic approaches. The impact of image enhancement on classification performance is evaluated by comparing transfer learning-based Convolutional Neural Network (CNN) models trained on both original and enhanced images.
View Article and Find Full Text PDFPlast Reconstr Surg
September 2025
Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
Background: Historically, cosmetic surgery has been primarily utilized by White patients. However, in recent decades, the population in the United States has become increasingly diversified. It is unknown how these national demographic changes have affected the racial and ethnic distribution of those utilizing cosmetic surgical services.
View Article and Find Full Text PDF