98%
921
2 minutes
20
Acetylene (CH), a critical chemical feedstock, is indispensable in numerous industrial processes. To satisfy the stringent demands for high-purity acetylene, adsorption-based separation techniques have become highly efficient strategies for purifying acetylene from mixtures containing methane and carbon dioxide. In this study, we introduce a novel cooperative ligand engineering strategy that integrates low-symmetry functionalized auxiliary ligands. This innovative approach enables the stepwise synthesis of three zinc-based metal-organic frameworks (MOFs), specifically , , and , which exhibit distinct structural characteristics transitioning from 2D to 3D frameworks. The incorporation of functional groups and framework transformation optimizes the pore environments, thereby creating specific adsorption sites for target gases. Notably, demonstrates superior separation performance, with a CH adsorption capacity of 44.8 cm g at 298 K, and selectivities of 4.28 for CH/CO and 18.6 for CH/CH at 298 K and 1.0 bar. Postsynthetic modification with copper ions further enhances its CH selectivity, achieving values of 6.8 for CH/CO and 20.7 for CH/CH. These results outperform those of many previously reported MOF adsorbents, highlighting the substantial potential of these materials for industrial CH purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c09790 | DOI Listing |
Inorg Chem
September 2025
Department of Chemistry, Panskura Banamali College, Panskura RS, Purba Medinipur, WB 721152, India.
We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.
View Article and Find Full Text PDFInorg Chem
September 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
Selective oxidation of benzylic C(sp)-H bonds to ketones is critical to the production of fine chemicals but typically requires toxic/precious metal catalysts under harsh conditions. While iron-based complexes have recently served as catalysts for photocatalytic C-H bond activation, most systems operate via homogeneous catalysis. Developing a light-driven strategy under visible light with O as an oxidant is of major importance.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Garching bei München, Germany.
Catalytic reduction of quinolines has gained continuous interest in both academia and industry, providing direct and efficient access to tetrahydroquinolines or 1,2-dihydroquinolines. The catalytic preparation of tetrahydroquinolines has been extensively studied by transition metal complexes. By contrast, the related catalytic synthesis of 1,2-dihydroquinolines remains underdeveloped due to the difficulties in achieving precise control over both chemo- and regioselectivity.
View Article and Find Full Text PDFExp Cell Res
September 2025
Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong 510080, China. Electronic address:
Background: Chronic rejection is a major cause of long-term kidney allograft failure, characterized by persistent inflammation and progressive fibrosis. Macrophages are central mediators of this process, but their phenotypic heterogeneity and regulatory mechanisms in chronic rejection remain incompletely understood.
Methods: We performed single-cell transcriptomic analysis on renal allograft biopsies from patients with different types of rejection and on a time-course rat model of chronic rejection.