98%
921
2 minutes
20
Background: Chronic rejection is a major cause of long-term kidney allograft failure, characterized by persistent inflammation and progressive fibrosis. Macrophages are central mediators of this process, but their phenotypic heterogeneity and regulatory mechanisms in chronic rejection remain incompletely understood.
Methods: We performed single-cell transcriptomic analysis on renal allograft biopsies from patients with different types of rejection and on a time-course rat model of chronic rejection. Macrophage subsets were identified through transcriptional profiling and Pseudotime trajectory analysis. Ligand-receptor analysis defined upstream intercellular communication, while in vitro assays using THP-1 macrophages evaluated responses to Jagged1 stimulation under polarizing conditions.
Results: A distinct TGFBCD86 macrophage subset exhibiting both pro-inflammatory and pro-fibrotic features was identified. This population, enriched in mixed rejection, occupied an intermediate position along the inferred macrophage trajectory and displayed dual ontogeny. It received Jagged1-NOTCH2 signals from mesenchymal-transitioned tubular epithelial cells and inflammatory inputs from infiltrating T cells. In vitro, co-stimulation with soluble Jagged1 under M1-polarizing conditions induced a similar hybrid phenotype. In the rat model, a phenotypically comparable subset, provisionally termed M2b, appeared early post-transplantation and was later replaced by M2a macrophages as fibrosis progressed. Ligand-receptor analysis confirmed conserved Jagged1-NOTCH2 signaling regulatory axis in vivo.
Conclusion: In summary, we identify a transitional TGFBCD86 macrophage population governed by JAG1-NOTCH2 signaling, bridging immune activation and fibrotic remodeling. Modulating this pathway may offer a therapeutic approach to reshape macrophage differentiation and mitigate chronic rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2025.114711 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.
View Article and Find Full Text PDFTransplant Direct
September 2025
Laboratory for Transplantation Research, Department of Surgery, University Hospital Regensburg, Regensburg, Germany.
Extracorporeal photopheresis (ECP) is a safe and effective therapy with long-established indications in treating T cell-mediated immune diseases, including steroid refractory graft-versus-host disease and chronic rejection after heart or lung transplantation. The ECP procedure involves collecting autologous peripheral blood leucocytes that are driven into apoptosis before being reinfused intravenously. ECP acts primarily through in situ exposure of recipient dendritic cells and macrophages to apoptotic cells, which then suppress inflammation, promote specific regulatory T-cell responses, and retard fibrosis.
View Article and Find Full Text PDFTransplant Direct
September 2025
Unidad Transplante de О́rganos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.
Extracorporeal photopheresis (ECP) is a well-established, safe, and effective immunomodulatory therapy currently used in clinics to decrease T cell-mediated immunity in various disorders, including autoimmune diseases and chronic rejection in organ transplantation. Although the ECP procedure has been shown to induce apoptotic cells that are reintroduced into the patient at the end of the treatment, the precise tolerogenic mechanisms mediated by ECP are not fully understood. Previous in vitro studies have demonstrated that early apoptotic cells express annexins on their cell surface, which suppress myeloid cell activation on stimulation with bacterial lipopolysaccharide through Toll-like receptors.
View Article and Find Full Text PDFTransplant Direct
September 2025
Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain.
Extracorporeal photopheresis (ECP) is emerging as an apoptotic cell-based therapy that suppresses alloimmunity, promotes donor-specific regulation, and reduces the need for conventional maintenance immunosuppression. ECP therapy is associated with regulatory T-cell proliferation, anti-inflammatory effects, and reduction of anti-HLA antibodies, making ECP a possible alternative or adjunct treatment for preventing and treating transplant rejection. Presently, we have a limited understanding of the mechanisms of ECP action, and clinical evidence for efficacy in kidney transplantation is sparse.
View Article and Find Full Text PDFEur J Immunol
September 2025
CHU Nantes, Nantes Université, INSERM, Centre de Recherche Translationnelle En Transplantation et Immunologie (CR2TI), Nantes, France.
In the field of lung transplantation (LTx), the survival of lung transplant recipients (LTRs) is limited by events such as primary graft dysfunction (PGD), infections, and acute rejection (AR), which promote the development of chronic lung allograft dysfunction (CLAD). Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as key players in LTx because of their roles in immune regulation, inflammation, and antigen presentation. EVs carry immunologically active molecules such as MHC class I/II proteins, cytokines, and lung self-antigens (SAgs), suggesting their involvement in infections and both AR and CLAD.
View Article and Find Full Text PDF