98%
921
2 minutes
20
Hypothesis: Ice accretion on cold solid surfaces, often resulting from the impact and freezing of supercooled water drops (SLD), poses critical challenges in aviation, energy systems, and infrastructure. In practice, some drops freeze with dendritic structures-forming a solid-liquid mixture (mushy region) that may cause refreezing downstream (runback ice)-while others freeze without dendrites. We hypothesize this depends on the relative thicknesses of the propagating ice layer and the supercooled liquid layer.
Experiments: Water drops, both room-temperature and supercooled, were studied after impacting cold substrates using high-speed imaging. For room-temperature drops, freezing was triggered by cooling the substrate down to as low as -35C, with impact velocity adjusted by varying the syringe height. For supercooled drops, both the drop and the substrate were maintained at -10C. To achieve freezing under these conditions, a wind tunnel was employed to increase the impact velocity via airflow in a cold chamber.
Findings: Three freezing regimes were identified: (i) dendrite cloud propagation, (ii) thin ice layer expansion without dendrites, and (iii) a reverse freezing sequence where an ice layer forms after initial dendrite growth. To explain these regimes, a one-dimensional heat conduction model was developed, accounting for temperature-dependent thermal properties of water and predicting contact temperature and the evolution of a supercooled liquid layer. A threshold condition was established: dendrites form only if the supercooled liquid layer is thicker than the thin ice layer. Theoretical predictions align well with experimental observations. These results offer insight into freezing dynamics and implications for ice prediction in aerospace applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.138372 | DOI Listing |
Food Chem X
August 2025
School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.
Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.
View Article and Find Full Text PDFNanomicro Lett
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses. Although various anti-icing surfaces with photothermal effects can initially prevent icing, any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes. To address these challenges, we have developed a self-draining slippery surface (SDSS) that enables the thawy droplets to self-remove on the horizontal surface, thereby facilitating real-time anti-icing with the aid of sunlight (100 mW cm).
View Article and Find Full Text PDFNanoscale
September 2025
School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China.
Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.
View Article and Find Full Text PDFSmall Sci
September 2025
Fischell Department of Bioengineering University of Maryland, College Park Maryland 20742 USA.
Human induced pluripotent stem cells (hiPSCs) show great promise for personalized cell-based medicine, as they can be derived from easily accessible somatic cells and differentiated into all three germ layers without ethical concerns. This requires mass production of hiPSCs in 3D. However, contemporary methods for 3D culture result in hiPSC spheroids with significant size heterogeneity that is undesired for controlled differentiation and require the use of a high concentration of Rho-associated kinase inhibitor (RI) to improve the cell viability.
View Article and Find Full Text PDFLangmuir
September 2025
Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225127, Jiangsu, China.
To expand the application scope of carbon steel, imparting superhydrophobicity to its surface offers an effective strategy to overcome its inherently poor corrosion resistance. However, in marine environments, conventional superhydrophobic coatings often suffer from limited mechanical durability and inadequate long-term corrosion protection. In this study, a durable superhydrophobic bilayer coating composed of PDMS-MWCNTs (top layer) and PDMS (bottom layer) was developed to address these challenges.
View Article and Find Full Text PDF