98%
921
2 minutes
20
Synthetic aperture radar interferometry (InSAR) technology has emerged as a critical methodology for disaster reduction and prevention, offering unprecedented all-weather operational capabilities and extensive spatial coverage that effectively address the limitations of traditional detection methods. Despite the inherent challenges of temporal and spatial coherence in conventional time-series InSAR approaches, the small baseline subset InSAR (SBAS-InSAR) technique presents a sophisticated solution by significantly mitigating coherence-related uncertainties and enhancing measurement precision. While existing research predominantly focuses on urban environments, this study uniquely addresses the research gap in mountainous terrain deformation monitoring by utilizing Sentinel-1A and 1B single-look complex (SLC) data from ascending and descending orbits between January 2018 and May 2022. The comprehensive analysis of land subsidence in northern Tianjin's mountainous region revealed multi-directional surface deformation characteristics, with validation against GNSS Kriging interpolation data demonstrating root mean square errors of 5.74 mm and 5.09 mm in vertical and east-west directions, respectively. The investigation exposed predominantly horizontal deformation influenced by large-scale engineering activities, topographic conditions, and precipitation patterns, with notable findings including a maximum north-south deformation of 54.62 mm in the Maojiayu landslide area and vertical cumulative deformations of 21.10 mm and - 10.31 mm in Maojiayu and Taoosi landslide areas. These results substantiate the efficacy of InSAR technology in monitoring surface deformation in mountainous regions, offering critical insights for regional geological disaster prevention and mitigation strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267393 | PMC |
http://dx.doi.org/10.1038/s41598-025-10894-2 | DOI Listing |
PLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFJPRAS Open
September 2025
Clínica Cavadas, Paseo de Facultades 1, 46021 Valencia, Spain.
Madelung deformity is a hemi-epiphyseal dysplasia of the radioulnar axis. The prominent feature is radial deformity secondary to premature closure of the volar-ulnar side of the distal radial physics. The distal radius is malaligned with excessive ulnar and volar tilt, shortening and concomitant ulna plus deformity.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
To investigate the clinicopathological features, diagnosis, and prognosis of aggressive natural killer-cell leukemia (ANKL). A retrospective analysis was conducted on 27 ANKL patients treated at the First Affiliated Hospital of Nanjing Medical University from 2014 to 2024. Their clinical data, histomorphology, and immunophenotype were reviewed.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
September 2025
Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Signal Processing Laboratory (LTS5), École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland.
Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.
Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.