Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe. This method, based on the volume of fluid (VOF) method, is implemented in OpenFOAM and is verified by deformation tests with a visco-hyperelastic material in cavity flow. The torus exhibits multiple steady states depending on initial orientation, position, shear modulus, and the aspect ratio between major and minor radii, and the rotation angles of inclined tori reach approximately 80°. Deformation analysis of cross-sections reveals multiple deformation modes such as bending, rotation, and elongation over time. The equilibrium position of the torus is determined by the balance of various lift forces and becomes complex due to increased rotational diameter from elongation. Additionally, vortex structures and pressure gradients elucidate the mechanism that inclined tori are faster than horizontally oriented tori due to their deformation. Finally, flow tests of different microparticle shapes with the same surface area in a stenotic pipe show that the torus has the lowest pressure drop and flow rate reduction. These quantitative predictions are suggestive and encourage experimental study of toroidal microparticles as novel embolic agents in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416352PMC
http://dx.doi.org/10.1002/cnm.70089DOI Listing

Publication Analysis

Top Keywords

embolic agents
12
computational fluid
8
fluid dynamics
8
deformable toroidal
8
full eulerian
8
fsi method
8
toroidal microparticles
8
inclined tori
8
flow
5
deformation
5

Similar Publications

Purpose: To evaluate the efficacy and complications of absorbable haemostatic gelatin uterine artery embolisation for symptomatic acquired uterine arterio-venous malformation (UAVM).

Methods: All the adult female patients who had acute urogenital bleeding due to UAVM confirmed on ultrasound and received uterine artery embolisation (UAE) for UAVM in a tertiary institution between January 2000 and October 2024 were included. Patients who had UAE for other causes were excluded.

View Article and Find Full Text PDF

Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.

Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.

View Article and Find Full Text PDF

Background and purposeThis study presents our initial experience using Obtura, a novel nonadhesive liquid embolic agent with extra-low viscosity variants, in transvenous curative embolization of brain arteriovenous malformations (bAVMs). We assess the agent's performance and compare its advantages with other extra-low viscosity options currently available.Materials and methodsFive patients (three females, two males; mean age, 33 years; range, 20-55 years) with ruptured bAVMs were treated using the transvenous retrograde pressure cooker technique (TVRPCT).

View Article and Find Full Text PDF

The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.

View Article and Find Full Text PDF