98%
921
2 minutes
20
Introduction: Growing evidence suggests that corticospinal tract (CST) damage and microstructural integrity are key predictors of post-stroke motor impairment. However, their combined clinical utility-particularly in CST sub-pathways originating from non-primary motor cortical areas-remains underexplored. This study aimed to determine whether microstructural integrity and lesion load (LL) of each CST sub-pathway at 2 weeks predict motor outcomes at 2, 6, and 12 weeks post-stroke.
Methods: Fifty seven participants completed motor and neuroimaging evaluations at 2 weeks post-stroke and underwent follow-up motor assessments at 6 ( = 37) and 12 weeks ( = 34). The integrity of the CSTs was quantified using diffusion spectrum imaging (DSI), while CST-LL was measured using structural magnetic resonance imaging, both based on the sensorimotor area tract template atlas. Stepwise multiple linear regression models were used to assess the predictive value of CST microstructural integrity and CST-LL in each sub-pathway at 2 weeks for motor function at 2, 6, and 12 weeks post-stroke.
Results: The results indicated CST integrity and CST-LL were both the main determinants of motor deficit at 2 weeks post-stroke. Specifically, the integrity of CSTs from the primary motor cortex (M1), reflected by fractional anisotropy, emerged as a significant predictor of post-stroke motor deficit at 2 weeks, whereas CST integrity from the dorsal premotor cortex (PMd), reflected by generalized fractional anisotropy, quantitative anisotropy, and radial diffusivity. CST-LL originating from non-M1 motor areas, such as primary sensory cortex (S1), were also the main determinants for motor impairment at 2 weeks post-stroke. However, compared to CST integrity, CST-LL from non-M1 motor areas, including both the PMd and S1, were more dominant predictors, explaining 68.3% ( = 0.683, < 0.001) and 79.5% ( = 0.795, < 0.001) of the variance in motor outcomes at 6 and 12 weeks.
Conclusion: The microstructural integrity of the PMd tracts and CST-LL from the non-M1 motor areas may be promising biomarker for post-stroke motor impairment. These findings highlight the pivotal role of non-M1 tracts in post-stroke motor function, particularly the PMd tracts, as a potential intervention target to enhance motor recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261457 | PMC |
http://dx.doi.org/10.3389/fnhum.2025.1598598 | DOI Listing |
Front Neurosci
August 2025
Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.
Objective: Construct a predictive model for rehabilitation outcomes in ischemic stroke patients 3 months post-stroke using resting state functional magnetic resonance imaging (fMRI) images, as well as synchronized electroencephalography (EEG) and electromyography (EMG) time series data.
Methods: A total of 102 hemiplegic patients with ischemic stroke were recruited. Resting - state functional magnetic resonance imaging (fMRI) scans were carried out on all patients and 86 of them underwent simultaneous electroencephalogram (EEG) and electromyogram (EMG) examinations.
Cureus
September 2025
Rheumatology, University Hospitals Coventry & Warwickshire, Coventry, GBR.
Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition that may develop after fractures, surgery, or soft tissue trauma. It is characterized by pain disproportionate to the initial injury, often accompanied by sensory, motor, autonomic, and trophic changes. Despite extensive research, pathophysiology remains unclear, and treatment approaches are varied, with inconsistent supporting evidence.
View Article and Find Full Text PDFCureus
September 2025
Research, Rinaldi Fontani Foundation, Florence, ITA.
Stroke remains a leading cause of long-term disability worldwide, and early intervention is critical for optimizing neurorehabilitative outcomes by capitalizing on the heightened neuroplasticity of the acute and subacute phases. This study aimed to evaluate whether the integration of Radio Electric Asymmetric Conveyer (REAC) neurobiological modulation protocols, Neuro Postural Optimization (NPO) and Neuro Muscular Optimization (NMO), into early post-stroke rehabilitation can accelerate and enhance functional recovery compared to conventional rehabilitation alone. Thirteen patients (nine males, four females; age range: 56-86 years; mean: 74) received a single NPO session, followed by an intensive cycle of 10 NMO sessions distributed over five to six consecutive days.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Ethnopharmacological Relevance: Fujian Tablet (FJT), a traditional Chinese herbal compound formulation developed under the theoretical framework of "nourishing the liver and kidney, replenishing essence and marrow" , has been clinically applied for over two decades to treat post-stroke neurological deficits. Preliminary studies demonstrated its efficacy in improving motor function and promoting cervical spinal cord neuroaxonal growth in a middle cerebral artery occlusion (MCAO) rat model. Building upon these findings, this study integrates metabolomic evidence of Foxo3a-GPX4 axis activation to systematically elucidate Fujian Tablet's neurorestorative mechanisms through three interconnected pathways: regulation of ferroptosis, promotion of oligodendrocyte proliferation, and remyelination.
View Article and Find Full Text PDFNeuroimage Clin
August 2025
Department of Psychology, University of South Carolina, Columbia, SC, USA.
Introduction: Stroke can lead to neurological changes beyond the initial lesion site, including post-stroke crossed-cerebellar degeneration. While traditional methods typically rely on total lesion volume to assess remote effects, the spatial distribution of lesions may more accurately predict cerebellar atrophy and associated functional deficits. This study investigated whether anatomically specific cortical lesions contribute to cerebellar gray matter volume loss, expanding on the hypothesis that cerebellar atrophy may reflect more than global brain injury severity, and instead result from targeted disruption of cortico-cerebellar pathways.
View Article and Find Full Text PDF