DFN-YOLO: Detecting Narrowband Signals in Broadband Spectrum.

Sensors (Basel)

National Key Laboratory of Intelligent Spatial Information, Beijing 100029, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of wireless communication technologies and the increasing demand for efficient spectrum utilization, broadband spectrum sensing has become critical in both civilian and military fields. Detecting narrowband signals under broadband environments, especially under low-signal-to-noise-ratio (SNR) conditions, poses significant challenges due to the complexity of time-frequency features and noise interference. To this end, this study presents a signal detection model named deformable feature-enhanced network-You Only Look Once (DFN-YOLO), specifically designed for blind signal detection in broadband scenarios. The DFN-YOLO model incorporates a deformable channel feature fusion network (DCFFN), replacing the concatenate-to-fusion (C2f) module to enhance the extraction and integration of channel features. The deformable attention mechanism embedded in DCFFN adaptively focuses on critical signal regions, while the loss function is optimized to the focal scaled intersection over union (Focal_SIoU), improving detection accuracy under low-SNR conditions. To support this task, a signal detection dataset is constructed and utilized to evaluate the performance of DFN-YOLO. The experimental results for broadband time-frequency spectrograms demonstrate that DFN-YOLO achieves a mean average precision (mAP50-95) of 0.850, averaged over IoU thresholds ranging from 0.50 to 0.95 with a step of 0.05, significantly outperforming mainstream object detection models such as YOLOv8, which serves as the benchmark baseline in this study. Additionally, the model maintains an average time estimation error within 5.55×10-5 s and provides preliminary center frequency estimation in the broadband spectrum. These findings underscore the strong potential of DFN-YOLO for blind signal detection in broadband environments, with significant implications for both civilian and military applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252476PMC
http://dx.doi.org/10.3390/s25134206DOI Listing

Publication Analysis

Top Keywords

signal detection
16
broadband spectrum
12
detecting narrowband
8
narrowband signals
8
signals broadband
8
civilian military
8
broadband environments
8
blind signal
8
detection broadband
8
broadband
7

Similar Publications

Ultrasensitive multifunctional biosensor integrating ECL quenching and DPV enhancement for early classification of thyroid cancer via BRAF V600E and microRNA-221 detection.

Biosens Bioelectron

September 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer with a high incidence among endocrine malignancies. It tends to metastasize early in lymph nodes and differs markedly from other subtypes in biological behavior, clinical management, and prognosis. Therefore, accurately distinguishing PTC from other pathological subtypes is crucial for guiding diagnosis and treatment decisions.

View Article and Find Full Text PDF

An ultrasensitive biosensor for H1N1 virus coupled with 3D spherical DNA nanostructure and CRISPR-Cas12a.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China. Electronic address:

To achieve ultrasensitive and real-time detection of the H1N1 influenza virus, this study designed a nucleic acid-free fluorescent biosensor based on 3D spherical DNA nanostructure and CRISPR/Cas12a (3D-SDNC). The biosensor constructs a rigid 3D nano-framework via self-assembly of six oligonucleotide chains, with H1N1-specific nucleic acid aptamers and Cas12a activator strands strategically positioned at multi-spined vertices for precise spatial coupling between viral recognition and signal transduction. Upon aptamer-virus binding, the induced conformational change liberates the activator strand, thereby activating the trans-cleavage activity of the Cas12a/crRNA complex to efficiently cleave the HEX/BHQ1 double-labeled fluorescent probe and initiate cascade signal amplification.

View Article and Find Full Text PDF

Peptide Sequence Modulating the Analytical Performance of Electrogenerated Chemiluminescence Peptide-Based Biosensors for Matrix Metalloproteinase 2.

Anal Chem

September 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.

Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.

View Article and Find Full Text PDF

Built environment surveillance has shown promise for monitoring COVID-19 burden at granular geographic scales, but its utility for surveillance across larger areas and populations is unknown. Our study aims to evaluate the role of built environment detection of SARS-CoV-2 for the surveillance of COVID-19 across broad geographies and populations. We conducted a prospective city-wide sampling study to examine the relationship between SARS-CoV-2 on floors and COVID-19 burden.

View Article and Find Full Text PDF

P-Doped Cu-N-C Single-Atom Catalysts Boost Cathodic Electrochemiluminescence of Luminol for MicroRNA-320d Detection.

Anal Chem

September 2025

Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.

Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.

View Article and Find Full Text PDF