Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High aspect ratio (HAR) sample-induced aberrations seriously affect the topography measurement for the bottom of the microstructure by coherence scanning interferometry (CSI). Previous research proposed an aberration compensating method using deformable mirrors at the conjugate position of the pupil. However, it failed to compensate for the shift-variant aberrations introduced by the HAR hybrid trench array composed of multiple trenches with different parameters. Here, we propose a computational aberration correction method for measuring the topography of the HAR structure by the particle swarm optimization (PSO) algorithm without constructing a database and prior knowledge, and a phase filter in the spatial frequency domain is constructed to restore interference signals distorted by shift-variant aberrations. Since the aberrations of each sampling point are basically unchanged in the field of view corresponding to a single trench, each trench under test can be considered as a separate isoplanatic region. Therefore, a multi-channel aberration correction scheme utilizing the virtual phase filter based on isoplanatic region segmentation is established for hybrid trench array samples. The PSO algorithm is adopted to derive the optimal Zernike polynomial coefficients representing the filter, in which the interference fringe contrast is taken as the optimization criterion. Additionally, aberrations introduce phase distortion within the 3D transfer function (3D-TF), and the 3D-TF bandwidth remains unchanged. Accordingly, we set the non-zero part of the 3D-TF as a window function to preprocess the interferogram by filtering out the signals outside the window. Finally, experiments are performed in a single trench sample and two hybrid trench array samples with depths ranging from 100 to 300 μm and widths from 10 to 30 μm to verify the effectiveness and accuracy of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251917PMC
http://dx.doi.org/10.3390/s25134085DOI Listing

Publication Analysis

Top Keywords

hybrid trench
16
trench array
16
har hybrid
8
topography measurement
8
coherence scanning
8
scanning interferometry
8
shift-variant aberrations
8
aberration correction
8
pso algorithm
8
phase filter
8

Similar Publications

Chemical mechanical planarization (CMP) is an indispensable technique for achieving global planarization in shallow trench isolation (STI) structures, a critical component in modern integrated circuits. With the continuous advancement of technology and increasing demands for chip performance, the critical metrics of STI CMP processes have become increasingly stringent, placing higher requirements on the performance of polishing slurries. In particular, SiO/SiN removal rate selectivity (RRS) and surface flatness directly impact product quality and yield.

View Article and Find Full Text PDF

The carrier dynamics of orange/red LEDs incorporating In-rich InGaN/GaN double quantum well (DQW) structures are explored. The improved hybrid LED structure incorporates an In-poor InGaN single quantum well (SQW) alongside DQWs that are characterized by enhanced efficiency compared to the control LED comprises InGaN/GaN DQWs solely. Advanced structural characterizations reveal a unique periodic V-shaped accumulation of Al around threading dislocations (TDs) in the n-AlGaN layer, providing insights into strain distribution around TDs.

View Article and Find Full Text PDF

In this study, we develop a graphene-trenched silicon Schottky junction for humidity sensing. This novel structure comprises suspended graphene bridging etched trenches on a silicon substrate, creating both free-standing and substrate-contacting regions of graphene that enhance water adsorption sensing. Suspended graphene is intrinsically insensitive to water adsorption, making it difficult for adsorbed HO to effectively dope the graphene.

View Article and Find Full Text PDF

High aspect ratio (HAR) sample-induced aberrations seriously affect the topography measurement for the bottom of the microstructure by coherence scanning interferometry (CSI). Previous research proposed an aberration compensating method using deformable mirrors at the conjugate position of the pupil. However, it failed to compensate for the shift-variant aberrations introduced by the HAR hybrid trench array composed of multiple trenches with different parameters.

View Article and Find Full Text PDF

Simulation study of biosensor based on germanium-based dual-source dopingless line-tunneling FET.

Nanotechnology

May 2025

Key Laboratory for Wide Band Gap Semiconductor Materials and Devices of Education, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China.

In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area.

View Article and Find Full Text PDF