Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: An increasing number of studies have revealed a link between lactylation and tumor initiation and progression. However, the specific impact of lactylation on inter-patient heterogeneity and recurrence in glioblastoma (GBM) remains to be further elucidated.

Methods: We employed functional enrichment algorithms, including AUCell and UCell, to assess lactylation activity in GBM cancer cells. Additionally, we introduced the interquartile range (IQR) method based on a set of lactylation-related genes (LRGs) to reevaluate the extent of lactylation production within the cancer population at the single-cell resolution. By reconstructing the spatial transcriptomics of hematoxylin and eosin (HE)-stained sections, we further evaluated the lactylation activity in GBM tissues. Subsequently, We employed machine learning algorithms to identify hub genes significantly associated with elevated lactylation levels in GBM. Finally, we experimentally validated the emulsification efficiency and quantified the expression levels of hub genes in human GBM samples.

Results: Our study innovatively demonstrated a markedly elevated global lactylation level in GBM and validated it as an independent prognostic factor for GBM. We established a prognostic gene model associated with emulsification in GBM. Furthermore, the machine learning-based model identified SSBP1, RPA3 and TUBB2A as potential biomarkers for GBM. Notably, the expression levels of these three hub genes and the lactylation level of TUBB2A in GBM tissues were significantly higher compared to those in normal tissues.

Conclusions: We propose and validate a IQR lactylation screening method that provides potential insights for GBM therapy and an effective framework for developing gene screening models applicable to other diseases and pathogenic mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241668PMC
http://dx.doi.org/10.3389/fimmu.2025.1601533DOI Listing

Publication Analysis

Top Keywords

hub genes
12
gbm
11
lactylation
9
spatial transcriptomics
8
tubb2a potential
8
cancer cells
8
machine learning
8
lactylation activity
8
activity gbm
8
gbm tissues
8

Similar Publications

Identification and prioritization of gene sets associated with schizophrenia risk by network analysis.

Psychopharmacology (Berl)

September 2025

Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.

Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.

Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.

Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.

View Article and Find Full Text PDF

Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.

Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF