Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study assessed the effectiveness of a combination of platelet-rich plasma (PRP) and β-tricalcium phosphate/polylactic-co-glycolic acid (β-TCP/PLGA) fibers in the treatment of osteoporotic vertebral defects in rats. Seventy-two female Sprague-Dawley rats subjected to ovariectomy to induce osteoporosis were divided into three groups to receive different treatments for critical bone defects created in the lumbar vertebrae. The PRP group received β-TCP/PLGA fibers infused with PRP, the control group received no material, and the other group received the same fibers infused with phosphate-buffered saline (PBS). Over a period of 12 weeks, bone regeneration, macrophage differentiation, and inflammatory responses were evaluated histologically. Compared to the PBS group, the PRP-treated group demonstrated significantly enhanced early stage bone formation, increased expression of osteogenic markers, and a favorable shift in macrophage activity from the M1 inflammatory phenotype to the M2 healing phenotype. These outcomes suggest that the combination of PRP and β-TCP/PLGA fibers not only effectively promotes bone repair under osteoporotic conditions but also modulates the immune response to facilitate better healing, indicating its potential as a beneficial surgical intervention for osteoporotic vertebral fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229787PMC
http://dx.doi.org/10.1267/ahc.24-00066DOI Listing

Publication Analysis

Top Keywords

β-tcp/plga fibers
16
osteoporotic vertebral
12
group received
12
bone repair
8
repair osteoporotic
8
vertebral defects
8
fibers infused
8
prp
5
fibers
5
bone
5

Similar Publications

Recent advances in neural regeneration have demonstrated the importance of incorporating proteins into polymeric capsules to provide both topographical and biochemical cues to cells. Coaxial electrospinning has emerged as a versatile technique for embedding delicate bioactive agents within core-shell nanofibers, enabling controlled and sustained drug release. In this study, we employed a design-of-experiment approach to systematically investigate how controllable parameters in coaxial electrospinning influence the diameter and size distribution of aligned poly (ethylene oxide-poly(l-lactide-co-glycolide) nanofibers loaded with nerve growth factor (NGF).

View Article and Find Full Text PDF

Mechanically tunable fiber-based hydrogel activates PIEZO1-integrin axis for enhanced bone repair.

J Nanobiotechnology

September 2025

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.

Irregular alveolar bone defects pose persistent clinical challenges due to their complex morphology and the lack of biomaterials that simultaneously provide structural integrity, biocompatibility, and dynamic osteoinductive potential. Herein, we report a fiber-reinforced, dual-network hydrogel system (OHADN fiber@Yoda1 hydrogel) engineered to recapitulate mechanobiological cues for enhanced bone regeneration. This injectable hydrogel integrates oxidized hyaluronic acid (OHA) crosslinked with Yoda1-loaded PLGA-collagen fiber fragments and stabilized via catechol-Fe³⁺ coordination, forming a robust and self-healing structure.

View Article and Find Full Text PDF

This study developed a biodegradable neural guidance conduit using electrospun poly(lactic-co-glycolic acid) (PLGA) and multiwall carbon nanotubes (MWCNT) to deliver allogeneic Schwann cells (SCs) for enhanced peripheral nerve regeneration. The conduit incorporated fibrin and lycopene-chitosan nanoparticles (Lyco-CNPs) optimized for enhanced stability and drug delivery (diameter: 163 ± 6 nm; zeta potential: -9.3 mV), addressing limitations of prior formulations.

View Article and Find Full Text PDF

Communities of bacteria collectively known as the vaginal microbiota reside in the human vagina. Bacterial vaginosis (BV) describes an imbalance of this microbiota, affecting more than 25% of women worldwide, and is linked to health problems such as infertility, cervical cancer, and preterm birth. Following antibiotic treatment, BV becomes recurrent in many individuals.

View Article and Find Full Text PDF

The study aims to develop graft materials suitable for treating severe muscle loss and thyroid ophthalmopathy. A new hybrid graft combining poly(caprolactone) (PCL), poly(lactic--glycolic acid) (PLGA), and decellularized bovine extraocular muscle (dEOM) was created. PLGA membranes were formed via solvent casting, and aligned PCL (aPCL) nanofibers were electrospun onto these membranes, resulting in aPCL-PLGA.

View Article and Find Full Text PDF